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PREFACE

This is the second volume of our Final Report for work done
under NASA Contract Number NAS 8-5002.

This volume, like the first one, is divided into two parts.
Part A is devoted to an analytical study of the time-optimal control
problem and is a direct continuation of Part A of the first volume.
It consists of results obtained by Daniel C. Lewis and Pinchase
Mendelson and was also written by them. Part A of the present volume
starts with Chapter 13. The preceding twelve chapters of Part A are
contained in the first volume. Bearing this fact in mind, the reader
should have no difficulty in following all references which appear in
the text.

Part B is devoted to work carried out by J. Gilchrist,
J. Schlessinger, G. Campbell and K. A. Ivey on computer simulation
of time-optimal control laws. The final editing of this part was

carried out by Keith A. Ivey.
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MATHEMATICAL THEORY OF THE TIME OPTIMAL CONTROL PROBLEM
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CHAPTER 13

A CLOSED CONTROL LAW FOR THE SYSTEM "X’



1. Derivation of A Closed Control Lew For The System 'X’ = €

The trivial system
X, =€, €=+1, (1)
is controlled time-optimally by the function

€=sgnd, 0= -x. (2)

We shall write €, = sgn (-xl).

The function el may be used to define a closed form control

law for the second order system.

il = €, i2 =x, €=2#1 (3)
In fact, let

o, = €

op =% = 3 lei =Xt 3 (sem xl)xi (&)
and define

o= -0, = -[x2+%(sgn xl)xi]- (5)



Then

€, =sgn o (6)

is the time-optimal control law for system (3). The fact that (6)
does indeed define the time-optimel control law is clear by direct
inspection using the known switching curve for system (3). However,
certain remarks concerning the definition of o, and o are in order.

Regarding the former we note that

4 Yo }f o, = 1

.
0y = 4

!

\ .

%2 if o =-1 (7)
where
ylle Zl=Xl

2 = =053 xi) 8)

are the auxiliary variables defined extensively in previous chapters
(cf. Chapter 2, pp. 25-26). On the other hand, equation (5) arises

naturally from the known equation of the switching curve of system



(3). The switching curve is composed of 2 branches (leaves) given,

respectively, by the equations and inequalities:

£(y,) =y, =0, ¥, <0

f(z2) =z,=0, 2,<0

The function o may thus be defined by:
g = —f(Ug) =0, = -(sgn 02) |62|.

This procedure can be carried still further and the function
62 may be used to define the closed form control law for the third

order system.
e =+1 (9)

We recall first that the auxiliary variables for system (9) are given

by [Chapter 2, pp. 25-26]:

Y17 % 17 ™
2 2

y2 = X2 - % Xl 22 = —(xe% Xl) (lO)
1.3 - 3

Y5 = Xz=Xp%) 3% Zg = (x5+x2xl+§ xl)



Let

h2(xl’ Xor Xz n) = Xy
h5(xl, Xor Xa n) = X5
then clearly

hi(xl’ Xps Xz +1) =y
hi(xl, Xos Xz -1)= -2,
Define

01 = €%

02 = h2(xl’ X J XB) cl) =

03 = hB(xl’ x2, XB, cl) =

in which case

The two leaves of the 2 dimensional switching surface of system (9)

1 2
2%
1.3
N XXt 3 Xy
i=2,3
i=2,3
L2
Xom 5 01%
1.3
xB— 0y X%+ 3 X315

-10-
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are given by

2 Yy y
Rypt £(¥ps ¥5) = v+ yg =0, ;i <0, ¥y, <- ;i (12)
2, .3 %3 i
R213 f(zz) ZB) = 2'3 + 22 = 0, - <0, Zl <- 22
Let
_ 2 5
o = -[(sgn 05) IUBI + 03] (124)

We shall show that ¢ 1is a closed time-optimal control law for system
(9).

Let P(xl, X5) x5) be an arbitrary point in phase space which
does not lie on the switching surfacevof system (9), and whose pro-
jection (xl, x2) on the (Xl’ xe)—plane does not lie on the switch-
ing curve of system (3). The last condition implies that ol(P) is
either +1 or -1. Assume first that cl(P) = + 1. The case cl(P) =
-1 will be treated later in an analogous fashion.

The variables (xl, x2) may be expressed in terms of (yl, y2).
Therefore, the function ol(xl, x2) = eg(xl, x2) may be viewed as a
function of (yl, yg). In the (yl, ye)-plane let % denote the

* * *
set of all those points P such that cl(P ) = 62(P ) = 1. The set

*
% is bounded by the two leaves (i) Y= 0, ¥, <0, (ii)

-11-




1 2)

2 .
2,= ~(x+ 3 xl) = _(y2+ ¥1) =0, z;= -y, <0 (Figure 1).

1

ﬁ?z

FIGURE 1

In the (yl, Yo yB)-space let Y3 denote the V3 axis and
*
let Z =% X Y3’ where X denotes the Cartesian product. X is

then the cylindrical set, parallel to the yB-axis, whose base in

12—



*
the (yl,yg)-plane is the set Z . Clearly if cl(P) = 1 then
PelZ.

The leaf R22

bounded by Rllll R12 . These one-dimensional leaves may be repre-

of the two-dimensional switching surface R2 is

sented, 1n terms of the y's, as follows:

(13)

o
!
}._J
A
N
m‘<:
!
°
e
W
|
L

11

R s 3 <0 + =0 2492 =0 (14)
12' y2 ) y5 yeyl - ) yB Y2 - -~

(Chapter 2, p. 27 and p. 30.). The projection of R, on the
(yl,y2)—plane is the negative half of the Yy~ axis. To find the pro-
Jjection of ng, solve for y3 in the first equation in (14) and
substitute in the second. The result is y2+ yi = 0. Moreover, sub-
stitution of y5 into the inequality in (1L) yields yl > 0. There-
fore, the projection of Rll(j R, into the (yl,ye)—plane coincides

*
with the boundary of X . The leaf R is obtained by solving back-

22
wards in time, using € = + 1, starting on R12' Therefore, in the
(yl,y2,y5)—space the leaf R,, is a cylindrical set parallel to the

yl-axis and such that along every generator of this leaf the maximum

value of ¥ is attained at a point on ng. R12 is thus the upper

edge of R22 with respect to the yl-axis. It follows that the

-13-



projection of R,, on the (yl,yz)-plane is the set I .

We have arrived at the following configuration: 1In the (yl,y2)-
plane there is a set Z* which forms & base of a cylindrical set
Z, mparallel to the yB-axis. Within this cylinder lies a leaf of
the switching surface (namely R22) in such & way that it is
parallel to the y, -axis and its projection on the (yl,yg)—plane is
the set Z*. Hence R22 separates % 1into two distinct parts.

In a completely analogous fashion we note that the variables

(xl,xg) may be expressed in terms of (z 2) and that therefore

10 2
the function cl(xl’XZ) may be viewed as a function of (21’22)'
*%
Define the set X in the (zl,zg)-plane as the set of all points
* *
P such that ol(P ) = -1. Let Zs be the zj-axis in the
*%

_ v . s '
(21’22’25) space and let % L X Z5' Then R,, 1lies within X
and separates it into two distinct parts.

If we map the set I' into the (yl,yg,yB)—space via the trans-
formation which relates the y's +to the z's (Chapter 2, p. 27) we

obtain a set which must be contained in the complement of the set =.

This may easily be seen as follows: Let P be a point in ' Wwith

. o o o o .o .o )
coordinates (zl, Z5 23). Iet (xl, X5 x5) be the x-coordinates
corresponding to (Zi’ zg, zg). Then ol(xi, xg = =1, by definition

~1h-



o}

, o o0 _o _ . o o
of ='. If (yl, Yor yB) are the y-coordinates of (xl, X5, XB)

o _©O *c . *
then clearly (yl, yE) € X 7, by definition of £ . Hence

o .o _o . o .o _o c
(yl, Yo y3) ¢ =, or equivalently, (yl, Yo y5) € . It follows,

in particular, that R21’

lies in Zc . We conclude that Z

(namely R22)

when imbedded in the (yl,ye,y5)-space,

parts and does not intersect the second leaf.

As stated above, the leaf R

Its projection on the (ye,yB)—plane satisfies the equation

3

by (12), V3 >0 on R,

(YE,YB)-plane is given by

2 5
y5+y2_o

N <0, Y3 >0

22

is parallel to the

Hence the projection of R2

b5

y5 = O. But RQECZ whence Yo < 0 for all points on R

2

contains exactly one leaf

of the switching surface, is divided by it into two

ylmaxis.

2’

on the

FIGURE 2

Y

)

We are finally in a position to test the validity of the control

law given by (124A). If cl(P) =

-15-
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then P € ¥ and



o(P) = -[(sen y5)1y5l2 + YZ]- o

]
There are two possibilities: . jl -
' ]

(i) Y3 > 0, in which case

o(P) = -(y§+ yg) “

and sgn o(P) is as indicated in Figure 3. ¥
Sgn o(P) when

cl(P) =1 and V3 > 0.

FIGURE 3
A

(ii) V3 < 0 in which case

+ —>
o(P) = ~(-ly5]%- I5,1%) >0 = — %

and sgn o(P) = + 1. (Figure 4) S —— 4 ——

Sgn o(P) when

cl(P) = 1 and V3 <0
FIGURE 4

Thus sgn o(P) assigns the value + 1 +to all points of X

lying on the one side of R‘22 and the value -1 +to all points of X

-16-



lying on the opposite side. The fact that this particular assignment
is the correct one (and not the reverse assignment) follows from a
direct inspection of the switching surface (Chapter 11, Plates I, 171,
IIT following p.127).

If cl(P) = -1 then o(P) = -[{sgn(-zB)}I25|2+ (—22)5]
and again sgn o(P) assigns the value + 1 and -1 on opposite

sides of R, (in Z'). ©Note, however, that in this case

o(P) = [(sgn 23)[z5|2+ zg]

assigns the opposite values (in the (ig,ZB)—plane) from those assigned

in the (y2,y5)-plane in the comparable regions (Figure 5).

p=s
Ii%
| ﬁk———- iy
i P———H pa—
" > B
i 2
-4
!
i
| |
FIGURE 5

-17-



This, of course, conforms to the fact that these two leaves correspond

to opposite values of control.

-18-~



2. Appendix: Alternative Proof For The Control Law of § 1.

The proof of the control law for the system X, = €, kX.,= x

1 2 1’

X, = X given in § 1, supersedes the proof  given here for the same

)

law. Despite the fact that the proof given here is inferior to the

2)

cne given in § 1 from the point of view of brevity and elegance, the
present proof contains some ideas not occurring in the other proof
which might prove to be valuable in more complicated cases.

The determination of ¢ is made as follows:

Tet
. 1 2
X5 if ]x2| > 3 Xy
o, = (1)
X if |x,] s 1 x2
1 2 T 271
and let
1
03= Xzt (sgn cl)xlx2+ > xi (2)
2
Op= Xt %(sgn oy )% (3)
o = -((sen 05)]o5]|"+ (sen 0,)l0,]°) (1)
= 8l 057103 gn G,/1051 /-

Note that (sgn 02)|02]3= cg. Hence in this case
= —((s e 5
o = -((sen 05)|05| + 0%)-

-19-



Finally, we let

€ = sgn o. (5)

If the law is correct, the closure of the complete control
surface R2 should be given by the equation ¢ = O. From our pre-
vious developments, we know that R2= REll) R22, where R21 is

characterized by

z2,< - 23/22 (6a)
23/22 <0 (6b)
3 2
25 + 25 = 0, (6c)
- U - - 12
where Z)= = Xy, Zp= C Xyt 5 X, 25— - X3 X1 X, 3 x] s and R22

is characterized by

vy < - Y5/, (72)
Y3/ <O (7v)
V3 +v3=0 (7¢)

where = X = X - L x2 = X~ X X+ 1 x3
V1= Xpy YpT Xpm 5 Kpy V3T Xz XXt 3 Xy -
The first part of our proof is to show that o = O does indeed

yield the closure of RE’ To do this we consider the following four

regions of phase space:

-20-



Sl : |x2| <3 X Xy > 0.
52 : X5 > % xi,

S5 : ngl < % xi, xq <0
Sh : X5 < - % xi

All points of the phase space lie in the closure of the union of
these four regions, and no two of these four regions have a ~ommon

point.

1 2
LEMMA 1. If (xl,xg,x3) € 8, U 8,, then g, >0, 0,= X% 3 x| =

- Zy >0, 05= x§+ xlx2+ % xi = - 25. If, in addition, o =0 for
. . B 2 3 _ 2 > .
this point, then -¢ = (sgn 05)05 +05 =0, o5 <0, 03 + 05 = 0,

which is equivalent to z§ + zg = 0.

The proof of this lemma is omitted, since it is a routine job to
check in succession the statements of the lemma in the two cases when
(xl,x2,x5) € S, and where (Xl’XE’X3) € S5. To do this, we, of course,
use the definition, given by (1), (2), (3) and (4) of the various ¢'s

as well as the equations defining 2, and z

3

LEMMA 2. If (xl,xg,x5) €S <0,

)
Yo < 0, 05 = Xj— X1X2+ % xi = yB. If, in addition, o = O for this

v Sh’ then o

01—



2
point, then -g = (sgn 03)05 +0
2
which is equivalent to y3 + yg = 0.
The proof of this lemma is omitted for reasons analogous to those

given for omitting the proof of Lemma 1.

LEMMA 3. If (xl,xz,x3) € slu S, and if ¢ =0, then (6b) and

(6c) are both satisfied.

PROOF. The fact that (6c) is satisfied is clear from the last

statement in lemma 1. It is also clear from lemma 1 that 22/22 =

-

(—05)/(—02) = 05/02 < 0, since according to lemma 1, ¢, >0 in

Sl.U 82 and o3 < 0 if, in addition, o¢ = O.

LEMMA 4. If (Xl:xg,x3) ¢ S;U s, and if o =0, then (7b) and

(7c) are both satisfied.

PROOF. The fact that (7c) is satisfied is clear from the last state-
ment in lemma 2. It is also clear from lemma 2 that y5/y2 = 03/02 < 0,
since according to lemma 2, o, <O in SB(J Su while o >0 if,

in addition, ¢ = O.

LEMMA 5, If (xl,xe,x5) € slu S, and if o =0, then (6a) is

satisfied.

o0



PROOF. If (xl,XE,XB) € 8, then, from (1), 0 = X 1
From lemma 3 and (6b), we have 25/22 <0< -z, which implies
(6a).

If (xl’x2’x3) € Sy, then, from lemma 1, we have 25 =

Z25= ~Ops Op >0 and

Z.= - X (8)

by definition of =z Hence 23/22: 05/02, while we also have by

1"
lemma 1, if o = O, 05~ -02/2 . Hence

/2
23/22= —02/ . (9)
Again from lemma 1, 0= X+ % xi = (x2- % xi) + xi. Hence,

2 1.2

0, X] = X,- 5 X; >0 because (Xl’XE’XB) € S,. Therefore,
2 1/2 1/2
o, > x; . Therefore, 02/ > lel, and  -g, - lxll. Hence from

(8) and (9) we find that

—xl-xlz —2xl <0 if Xy >0

x, -x.= 0, 1if =x, <O0.

-3



Thus (6a) holds for any (Xl’XE’XB) € 8, for which o = 0. This

completes the proof of lemma 5.

LEMMA 6. If (xl,xz,XB) € 35(1 8, and if o =0, then (72) is

satisfied.

PROOF. If (Xl,xg,XB) € SB’ then, from (1), o,= x,= ¥, <O.
From lemma 4 and (7b), we then have y5/y2 <0< -y,, which implies
(72).

If (xl,xz,x5) € 8), then, from lemma 2, we have Yz= 03

Yo= Ops Op < 0; and
yi= % (10)

by definition of ¥y Hence y5/y2= 05/02, while we also have, by

lemma 2, if ¢ =0, c5= (-02)5/2 . Hence

2
y5/y - (;U.‘Q..ZZ_ - _ (‘U )1/2 (ll)
2 g5 2
. B 1.2 1.2 2
Again from lemma 2, o,= Xy- 5 Xj = (x2+ 5 xl) - x]. Hemce op+
2 1.2 . 1/2
x] = Xt 3 X <0 since (Xl’x2’x5) € §,. Therefore, (—02) > ]xll

2L



and -(--02)1/2 < -]xl

. Hence, from (10) and (11) we find that

y
=2 4 ¥, = -(-02)1/2+ x

< -|x | +x, =0.
Yo 1

1 1

Thus (7a) holds for any (Xl’XE’XB) € 8, for which o =0. This

completes the proof of lemma 6.

LEMMA 7. 01,02,05 are continuous functions of Xy and X5 in

Sl ¥ SB'

PROOF. From the definitions of §, and 8 we see from (1) that

5)

in SlLJ S Hence, from (2) and (3), we have

3

1 1
=Xt 3 lelxl and 05= x5+ ]xl|x2+ 3 xi s

whence the lemma is obvious.

LEMMA 8. If P is on the boundary of any of the regions

Si(i = 1,2,3,4) and if o =0 at P, then every neighborhood of
P contains at least one point @ dinterior to either Sl or S5
such that ¢ = 0 also at Q.

-25-



PROOF. From the definition of regions Si it is clear that any

boundary point of 82 and SA is also a boundary point of S1

or S Hence we may restrict attention to the case where P is

3
a boundary point of Sl or 55'

The regions Si are cylindrical regions, since the defining

inequalities are independent of x3. Their bases in the xlﬁxg—plane
2 *
are bounded by the parabolas Xy= + % xl . The projection P of

P on this plane must therefore lie on one of these parabolas and the

projection of a neighborhood of P must be a small region, containing

a set Z* of points Q* lying interior to the bases of either Sl

or 85 (or possibly both) and having P as a limit point(of Z*).
Now the function o is seen from (1), (2), (3) and (4) to be a

quadratic polynomial F(xB) in x, with coefficients which are

3

functions of Xl and X Moreover, these coefficients are continuous
in (xl,xg) in leJ s3 by lemma 7. The leading coefficient is
-sgn 03.

* . * *
Suppose first that UB(P ) = 0. Then UB(P ) = san 05(P )xlx2+

* .2 * 1 2 *
xl(P )". But at P xy= * 5%, - Thus xl(P ) = 0. Thus we have

1.3 ] B * * *
3 X = 0. Hence either X, = xl(P ) =0 or else sgn 05(P )xz(P ) +
1 *2 ) x 1 * D *

3 Xl(P )” = 0, whence either xg(P ) = - 3 xl(P )= or x2(P ) =

1

3

* *
shown that if 05(P ) =0, then x (P ) = 0. The only point on

L (

-26-



L x, which satisfies x,= O is the origin. Hence, if

1
*
OB(P ) =0 then P 1is the origin. But then P = (O,O,x3) where

2
1

»

n

I

* 1+
o

P is further constrained by the requirement that o(P) = 0. We

then have cl(P) = 0, cg(P) = 0, GB(P) = X Hence the equa-"

3
tion o(P) = 0, which can here be written -(sgn x5)x§ +0 =0,
implies that x5= 0. Hence P 1is at the origin. The statement of
the lemma is manifestly true if P is at the origin.

The argument contained in the last part of the above paragraph
also shows that, regardless of the value of GB(P*)’ the only point
P, whose projection into the xl,xg-plane is the origin and which
satisfies o(P) = 0, is the origin itself.

Suppose next that UE(Pf) # 0. Then P is not the origin and

*

P lies on one of the four branches of the parabolas mentioned above.

Since is & continuous function of x.,x

05 1
*
exists a neighborhood of P in Sl ) 85 such that UB(Q) is bounded

, in SllJ 53’ there
away from zero throughout that neighborhood, N. Therefore, the poly-
nomial F(x3) has coefficients continuous in Xy 5%, throughout N
and leading coefficient bounded away from zero. It follows that the

X through-

l)

* *
out N. Hence, if @ is sufficiently close to P and

roots Xs of F(X5) = 0 are continuous functions of x,,X,

Q* € 85{] {x5= 0} (or Q* € Sl n {x5= 0} as the case may be), there

-27-



* *
exists a root x5(Q ) of F(X5’ Q ) = 0 which lies close to the

¥*
value of x, at P. ILet (Q, x5) = Q. Clearly Qe S, (or 8,

3 3
es the case may be) and o0(Q) = O. This completes the proof of

lemma 8.

THEOREM 1. The set of points where ¢ = 0 is included in the

set Ry= R21U Rys -

PROOF. From lemmas 3 and 5, we see that, if ¢ =0 at P and if

Pe Sl(J %L’ then P e R, C Ry, -

if 0=0 at P and if Pe¢ 33(1 Sh’ then P ¢ R22C: R,y. From

From lemmas 4 and 6, we see that,

lemma 8, we see, that if ¢ =0 at P and if P is on the boundary
of one of the regions Si(i =1,2,3,4), then P is a limit point
of points @ in either Sl or 85 where o = O. Hence, P is in

this case & limit point of R or R22. That is, P € R

o1 21U By

in &ell possible cases regarding the location of P, Q.E.D.

LEMMA 9. If Pe Ry, then Pe (slu,s2)* end ¢ =0 at P. Here
we use (Slll SE)* to denote Slu_.S2 plus the points on the bound-
ary common to Sl and 32 hless the xB-axis. It is also the same

as the complement of §;]j—§; denoted by (5;13_5;70 .

08 _



PROOF.  R,, 1is characterized by (6a), (6b), and (6c). From (6c),
Z5 < 0. Hence by definition of Zps x2+ % xi > 0. By definition

of S, we thus see that P ¢ gh' From (6a) and the fact that

<0, we find that Z, %5 > -z Suppose P € S then x, £ 0

Zp 3 %’ 1
and hence zl z 0 and 2122 £ 0. Therefore, O = -2122 < 25. Hence
zizg < zg = - zg by (6c). Hence zi < -z,. By definition of the
z's this means that xi < x2+ % xi . But this last inequality con-
tradicts the assumption that P e §3 . Therefore, P ¢ zggij Su)c =
(s, U sg)* .

Now, if P(xl,xg,xj) € Ry, and therefore P e (Sl(j 82)*, we
find, as in lemma 1, that 9 > 0, 0= x5+ % xi = =25, Oy > 0,

- 1.5 _ = -
05= Xz* X Xpt 3 X] = -Zs. From (6b) and the fact that z,= -0, < 0,
we have Zs > 0 and hence oz < 0. From (6c) we now have —cg +
3

05 = 0. ©Since ¢, < 0, this last equation may be written

3
2 3 .
(sgn 05)|031 + o5 = O. Hence, o =0 at P as required.
*
LEMMA 10. If P € R,,, then Pe (35u Su) and ¢ =0 at P.

PROOF. R,, is characterized by (7a), (7b), and (7c). From (7c),
¥~ < O. Hence, by definition of Yo Xp- % xi < 0. Hence, by

definition of S,, P ¢ Sy. From (7a) and the fact that ¥y <0,

we find that Y195 > —yB. Suppose P € Sl’ then Xy z O and hence
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yl 2z 0. Therefore yly2 =0 and O s -yly2 <.y5. Hence

22 2__ 5 2 ig
y¥s < Y3 = -¥5 by (7Tc). Therefore ¥, < -¥,. Whnen this in-
equality is written in terms of the x's we find that

x?+ % xi < 0, which contradicts the supposition that P € S

Therefore, P e (él U Eg)c = (s5 U Su)* .

1

*
» &nd therefore P e (SBLJ Sh) ,

Now, if P(XI’XQ’X5) € R,

o~

. . 1 2 )
we find, as in lemma 2, that Ul < 0, 0,= x2- 5 Xl = y2 <0,

- L. .5 _ _
05= Xz=XyX5 *+ 3 X7 = Y3 From (7b) and the fact that Yp= 05 <0,
we have Y3 > 0 and hence o5 > 0. From (7c) we now have o5 *
cg = 0. Since 05 > 0, this last equation may be written

(sgn 05)|03|2 + 02 =0. Hence ¢ =0 at P as required.

THEOREM 2. If P e R,, then ¢ =0 at P.

PROOF. (P € R2) => (by lemmas 9 and 10) that o(P) = 0 and that

s. U s.)" s.Us ). s Pe R.-R
Pe ( LU 52) or 3 y) - Suppose € Ry~ Then P

o
is in the boundary of §21 or ﬁge . Hence P must lie on the

boundary between SLL and Sl or between 82 and S5 including

the possibility that P might lie on the x5-axis. But in the
3

ot V3
(yB: 0) => (x5= 0), which means that P is at the origin. Hence

last case (P € RQl) = y

o(P) = 0. Thus, we may assume that P ig not on the x.-axis.

3
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Suppose therefore that P  lies on the boundary between 52 and

85 but let it be not on the x3—axis. It is also known, that P

is on the boundary of R2l or R22, i.e., Pe RlllJ R12' From the
definition of 82 and S3 we have
x, <0, x.=2xx° (for P on the common boundary of S, and S.)
1> %272 h T 2 3
(12)

Since, X= ¥, < 0 it follows that P € Rll' Hence Y= y3= 0.

3

xZ = since
1~ 93

- 1.2 - 1
But Yo= Xp= 5 %= 0, and y3 = x3— xlx2+ 3
0= X < 0. Thus On 03= O, so that o = 0.

If P 1lies on the boundary between Sbr and Sl a similar

proof shows again that ¢ = 0, so that the proof of Theorem 2 is
complete.

Theorem 1 and 2 may be summarized by the statement that the
o If

¢ were continuous and had a non-vanishing gradient, we could finish

points where ¢ = 0 are precisely the points of R, = ﬁEltl ﬁ22'

the proof of the control law by verifying its validity at just one
point where ¢ f 0. It turns out, however, as follows from (1),

(2), (3) and (4), that o may experience discontinuities at points

on the surfaces X5= + % xi where ¢ % 0. Hence, for a complete
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proof, it appears necessary and sufficient to verify the control law

at four separate points, one in each of the four regions 81,82,83,

and Sh. For we easily see that ¢ 1is continuous in each of these

regions separately and has a non-vanishing gradient on RE'

The program was carried out using the follbwing specific points

P, (6,0, -281 ﬁ—) €8, Py(6,19,43) € 8,, P5(-6,0,281 -11:) € S, and

22 3
Pu(—6,-l9,—h3) € Sh. The control law yielded € = + 1 at P, eand
Ph and € = -1 at Pé and P5 which is in agreement with the

correct values of € at these points as computed in Chapter 11.
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CHAPTER 14

A GENERAL THEORY OF CONTROL FUNCTIONS
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On Control Laws For Systems Of Arbitrary Order. Reduction To

Canonical Form

The detailed analysis of the preceding chapter was intended
not so much to establish a control law for a special third order
system, but rather it was intended to serve as a stepping stone to
the understanding of general systems of order n (not necessarily
with zero eigenvalues). It should be stated at the outset that the
general problem is by no means solved. However, it is now definitely
reduced to a simpler problem (of lower dimensionality) in which all
surfaces appear in canonical form; These facts are elucidated be-
low.

Consider a system S of the form

X = Ax + ac

(1)

= c.Xx + dx
n + 1 n

-+
+ 1t as,

where x = (x;, ..., x_) is an n-vector, A is an n X n matrix
l) 2 n J J
& and c are constant n-vectors, d and « are given scalars and
€, the control parameter, may take on the values + 1. The associated

nth order system
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x = Ax + ae (2)

is denoted by S*. We assume, of course, that system (1) is controll-
able in some neighborhood of the origin.

We now pose the following general problem: For a given system
S suppose that a closed form control law, en(x), for the associated
system s¥ s completely known. Can en(x) be used to generate a

closed-form control law, ) for the higher order system

€n+l(x’xn+l
S 7 It is this problem which hasnowbeen reduced to a simpler form.

Iet us recall the main features of the affirmative solution to
this problem as given in Chapter 13 for the special case of a system
S of order three with three zero eigenvalues. The vector x in
the present formulation corresponds to the vector (xl,xg) in

Chapter 13, while the vector (X’Xn+l) corresponds to (Xl,Xé,XB).

*
The associated system S was given by
X, =€, X, =X (3)

and its control law, eg(x), was known. The function eg(x) was

used to define a set of two new functions cz(x), 05(x) such that

Q
N

L]
~—

1

V. if ee(x) = + 1, i=2,3

2,3.

Q
e
—
»
a4
1
I
1
}__‘
-
[
1}

-z, if ey (x)




The vector (xl’x2’x3) may be expressed in terms of (yl’y2’y5)

in such a way that x, and x

, are functions of (yl,yg) while

1
x3 is a function of (yi,yé,yi). The same statement holds true if

we interchange X, with Yo i=12,5. In particular, ez(x)

mey be viewed as a function of (yl,yé). In the (yl,yg)-plane we
defined the set Z* as the set of all points for which €y= + 1.

We used the set E* as the base of the cylinder X in the (yl,yE,yB)-

*
space, where ¥ was the Cartesian product ¥ XY We then showed

3
that X contained exactly one leaf of the switching surface of the
system S and did not even intersect the other leaf. Finally we
showed that the leaf which was contained in £ had the following two
essential properties: (i) it was parallel to the y,-axis, i.e., it
was orthogonal to the (yg,yB)-plane, and (ii) it separated I into
two distinct parts. In complete analogy with the above we also con-
structed the cylinder £' in the (21,22,23)-space and it turned out
that %' contained the second leaf of the switching surface and did
not intersect the first. Moreover, the leaf contained in X' had
the same properties in the (21,22,25)-8pace as listed above, namely:
(1) it was orthogonal to the (22,23)-p1ane, and (ii) it separated
Z' 1into two distinct parts. This construction was finally used to

generate a control function for the given system.
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The basic construction summarized above applies to (n + 1)st-
order systems of type (1).

Associated with system (1) are two sets of auxiliary varisbles,
(yl,..., yn+l) and (zl,..., Zn+l>' These auxiliary variables re-
duce the equations of the system to canonical form for € = + 1
and € = - 1, respectively. We recall that (y2, cees yn+1) and
(22,..., Zn+l) are defined by means of n time-independent first
integrals of the system S. These first integrals contain € as a
parameter and the y's and z's are obtained (except for the intro-
duction of a negative sign designed to guarantee that the transforma-
tion from the y's to the z's be involutory) by substituting the values
+1 and -1 for € in these first integrals. Denote the time-in-

dependent first integrals by hi(x,x i=2,0u., n+1. Due

n+l; G),

to the particular form of (1) it is clear that we may pick the first

n-1) of these, namely h., ..., h in such a way that they are in-
2 n’

dependent of x

41+  In other words, he(x, €)y oue, hn(x, €) are

*
time-independent first integrals of S . Following our standard pro-
cedure we now define canonical variables ¥s and z5 for the system

S Dby means of the transformations

yi= hi(x, L1} +1), i=2, «eo, nt 1,

. (3)
z;= —hi(x, xn+l; -1), 1=2, «v., n+t 1,
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and it is clear from the above remarks that (yé, cens yn) and
(zg, eeey zn) are part of a canonical set of variables for the
systen S*. At the risk of redundance, we note again for future re-
ference that (yé,..., yn) and (22, cees zn) are independent of
X ®

When the variables y, end z, are added to (3), [see Chapter

1] the transformations (3) are invertible in a neighborhood of the

origin and it is clear that the inverse transformations are of the

form

x =0y «ees ¥ 05 Xoa1™ Py (Fpoeees ¥puq)

X = Y(zl, cees zn); Xa1™ Yn+l(zl""’ Zn+1) (&)
Define

Z*z {(yl’.." Yn)len(m(yl,---;yn)) =+ 1}

¥ ((z50e, zn)]en(Y(zl,...,zn)) = -1},

*
2 is simply the set of all those points in the space of (yl,...,yn)

*¥
at which the function En takes on the value + 1. X is described

similarly . ILet Yn+l[Z ] denote the y —axisj[zn -axis] in

n+l n+l +1
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the space of y's [z's]. Iet

r o= Z* Y s n' o= Z** Z
- X n+l °’ - X n+l °

The following theorem embodies the first crucial step in the

development of our method.

THEOREM 1. Let Rni’ i=1,2, be the two leaves of the n-
dimensional switching surface of the system S. Consider Rni’
i=1,2, as imbedded in the space of y's. If n is even then
ZDRnE’ Z‘.anl=O and an
If n is odd then EDR ., ZA R .=0 and R

n n2 n

separates X into two distinct parts.

separates Z

1 1

into two distinct parts.

A completely analogous theorem holds for the set X', namely;

THEOREM 1'  Consider R;»1=1,2, as imbedded in the space

of z's. If n is even then Z'D R ZNR =0, and R
n ne nl

l)
separates X' into two distinct parts. If n 1is odd the subscript

1 is simply replaced by 2.

PROOF. Rll coincides with the negative half of the yl~axis. There-

fore Rll is parallel to the yl—axis. R21 is obtained by solving

backwards in time starting on Rll and using € = -1. R is

31
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obtained by solving backwards in time, starting on R21 and using

€ = + 1, Hence R31 is parallel to the yl-axis. It is clear there-
fore that the leaf Rkl of the k-dimensional switching surface Rk

is parallel to the yi-axis iff k 1is odd. Similarly it is clear
that the leaf sz of the k-dimensional switching surface Rk is
parallel to the yl-axis iff k is even. In particular, one has that
Rn2 is parallel to the yl-axis iff n dis even and Rnl is parallel
to the yl—axis iff n is odd, where (n + 1) is the order of the
system S. We may assume, without loss of generality, that n is
odd. The treatment of the case when n is even is completely analog-
ous.

Let Rki’ R;i’ i =1,2, denote the leaves of the k-dimensional
switching surfaces in the systems S and S*, respectively. The
leaf Rll is given by Yy <0, Vo= eee = Y41 = 0. The leaf R;l is
given by y, <0, y,= ... = ¥,= 0. It is clear from (4) that in a
neighborhood of the origin the (invertible) transformation from
(yl,...,yn+l) to (zl,...,zn+l) is such that (yl,...,yn) is in-

dependent of 2 while (Zl""’zn) is independent of Yo+

n+l 1 °

It follows that if we express the equations of Rll in terms of

z = (zl,...,zn) and z we would get

n+l
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(1) one inequality which does not contain 24

(2) (n-1) equalities which do not contain Zo4

(3) one equality which contains z and Zo4p

*
It is clear from the previous discussion that Rll s When ex-
pressed in terms of z is identical with items (1) and (2) above.

Assuming that n z 3 we now proceed to eliminate zy by using

the (n-l) equations of R11 which do not contain zn+l . Once

this elimination is effected we get a new representation of Rll of

the following type:

(1) gl(Z) <0, where z (Zl""’ zn)
(2) A(Z)Zl+ B(z) = 0
(3) £,(2) =0, i =3,..., n

(ll-) fn+l(z) Zn+l) = O)

where fn+l is independent of z,, asare g, A, B and fi,
i=5, 2o ey n,

¥*
On the other hand, the representation of R1l reduces to

(1) g(z) <o
(2) A(z)zl+ B(z) =0
(3) fi(z) =0, i=3, ..., n,
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where gl(z), A(z), B(z), fi(z), i=3,..., n, are identical with
those &bove.

The equations and inequalities of R when expressed in terms

21’

of the =z's are therefore of the form:

(1) g(z)<o, 1

(2) fi(z) =0, 1i=3,...,n,

1,2

(5) fn+1(ZJ zn““l) = OJ

*
while the equations of R are given by the first two items alone.

21

If we express the equations of R21 in terms of the y's we

obtain expressions in the forms

(1) ei(y) <o, 1

(2) fi(Y) =0, i=3,...,n,

1,2, y = (yl:---)yn))

1 —
(5) fn+l(y) yn+l) - O}
*
while the equations of R21 are given by the first two items alone.

If nz 4 we now eliminate ¥y from the equations which do not con-

21

by the appropriate equivalent set in which only the last equation con-

tain Yn+1 in which case the expressions which define R are replaced

*

oy &re identical with those, ex-

tains. Yn+1° The expressions defining R

cept for the absence of the last equation containing yn+l'
Proceeding thus by induction we finally arrive at the leaf Rn 5.1
T
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which is given by

(1) gi(z) <0, i=1, ..., n-2.
(2) fn_l(z) = 0, fn(z) =0

(5) fn+l(z’zn+l) = o)

*
while the leaf Rn 51 is given by the first two items alone.
e
We now eliminate Zq by using the two equations fn_l(z) =

fn(z) = 0 to obtain the following equivalent representation of

Rn—2,l :
(1) gi(z2,...,zn) <0, i=1, «..,n-2,
(2) A(ZE"'°’Zn)zl + B(zg,...,zn) = 0,
(3) f(zg,...,zn) = 0,
(k) k(zg,...,zn+l) = 0.
*
At the same time, the representation of Rn o1 consists of the first
%
three items alone.
Thus R is given by

m-1,1
(1) gi(zg,...,zn) <0, i=1,...,n-2

z, < —B(ze,...,znl/A(ze,...,zn),
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(2) f(ze,...,zn) =0

(3) k(ZE""’zn) = 0,

*
while the representation of Rn 1.1 consists of the first two items
4L
alone,
Expressing these equations and inequalities in terms of the

y's one gets, finally

(1) ei(y) <0, i=1,...,n-1
R 2 (2) £'(y) =0

(3) k'(Y)yn+l) =0,

whereas

(1) gi(y) <0, i=1,...,n-1
R* :
bl 2) ey = o

Since n 1is odd, the n-dimensional leaf Rnl of the system S,

when imbedded in the space of (y,y

n+l), is parallel to the ¥y, -axis.

It consists of all those points which lie on trajectories which are

obtained by moving backwards in time, starting at R with

n-1,1 ’

€ = + 1. These trajectories are straight half-lines parallel to the

yl-axis. In other words, Rnl is a cylindrical set (parallel to the

Ly



yl-axis) for which Rn 1.1 forms the upper edge with respect
L

to ¥q-
*
The set X consists of all those points in the space of ¥y
* *
for which €= " 1. Therefore, if P € Z- then the optimal tra-
*
jectory through P rises parallel to the yl—axis until it inter-
" R* v * S . .
sects n-1,1 Rn-l,2 . ince n 1is odd, n-1 1is even whence
*

Rn—l 5 is parallel to the yl—axis. The motion through P must

2

*
on R

n-1,1 ° Conversely, every point

*
therefore intersect Rn-l

which is obtained by moving downward (with respect to yl) from
R:—l,l 5 Dparallel to the yl—axis, is in Z*. It follows that Z*
is a cylindrical set (parallel to the yl-axis) for which Rn—l,l
forms the upper edge with respect to yy-

It is clear from the last representation of the leaves Rn—l,l

Y where Y represents

* *
and R thet R, CR 1 -

n-1,1 n-1,1 *

the yn+l-axis. This fact, when combined with the observations of

the two preceding paragraphs yields that Rnl is contained in ZX.

One now shows, in a manner analogous to the above, that Rn2’

when imbedded in the space of (z,z is contained in the set ZX°.

n+l)

Let Q(zi,...,z§+l) € R, and let the x- and y- coordinates

o o o o . .
of Q be (Xl""’xn+l) and (yl,...,yn+l), respectively. Since
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. o] o] o} o} *c
Q € Z' it follows that en(xl,...,xn) = -1, whence (yl,...,yn) ex .

Tt follows that (yi,...,y§+l) e 2. Thus R when imbedded in

nz}
the space of (y,yh+l) does not intersect Z.

The n-dimensional switching surface Rn separates the ' (n+l)-

dimensional space of (x,x .. ) into two distinct parts (Chapter 12).

n+l

This property is preserved when Rn is imbedded in the space of

(y’yn+1)° But since =N an Rnl

into two distinet parts. This completes the proof of Theorem 1.

it follows that Rnl separates Z

The proof of Theorem 1' is almost identical, except for some
obvious modifications. The details are left to the reader.
We recall our general problem: Given a control function

*
en(x) for the system S, find a control function €n+l(x’xn+l)

for the system S.
Suppose n 1is even. We note that the equation and inequalities

which define Rn2 in terms of Yy's and Rnl in terms of 2z are

identical except for the interchange of y's and z's and vice versa.

Thus the configuration of X and Rn in the space of y's is

2

identical with the configuration of X' and Rn in the space of

1

z's. A similar statement holds for the case when n is odd.
Suppose again that n is even. The leaf Rn2 is orthogonal to

the hyperplane yl= 0. A control function within X would therefore
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be independent of v, Let sen F(YE""’yn+l) be a control function

within £. The reader will readily convince himself that, on account

of the preceding paragraph, sgn[-F(zE,...,zn+l)] would then be a
control function within X'. Let
F(§2""’§n+l) = G(‘Eg;---;-§n+l) (5)

then sgn[-G(—zE,...,—zn+l)] is a control function within 5'. Let
0= en(x)

0;= hi(x,xn+l; cl(x)), i=2,...,n+l (6)
then clearly

0,= ¥, whenever en(x) =+1, 1i=2,...,n+l,

o,= -z, whenever en(x) = -1, i=2,...,n+l.

Define
0(x,xn+l) = (1 + GI)F(OQ""’Gn+l) - (l-cl)G(cg,...,cn+l) (7)
then

€n+1(x’xn+l) = sgn o (8)
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is a control function of S. We summarize these results in Theorem 2.

THEOREM 2. ILet sgn F(yg,...,y ) be a control function within

n+l
£. Let G be defined as in (5) and let o;5 1 =1,...,041, De
defined by (6). Then €41 580 0 1is a control function for S,
where o is defined by (7).

The import of Theorems 1 and 2 is to reduce the problem of find-
ing a control function throughout the whole of phase space to that of
finding a control function (in terms of the y's) in the set £ alone.
This task is simplified somewhat further by the fact that £ is a
cylindrical set which is parallel to the yn+l-axis and the leaf which
separates it (see Theorem 1) is orthogonal to the hyperplane Y= 0.
It is therefore sufficient to consider the projection of this leaf in
the hyperplane y= 0. Finally, since X 1is a cylindircal set parallel
to the yn+l—axis it is sufficient to search for the two sides of the
separating leaf in the direction of Yn+1 alone. This would certainly
tend to simplify greatly the problem of finding a suitable
F(yg,...,yn+l). However, a general procedure for obtaining this
function is not yet available,

One final remark is in order. The function ¢ is indeterminate
on the set on which en(x) = 0. It also vanishes on the switching
surface of the system 5. However, these two sets have n-dimensional

measure zero and will therefore not affect the effectiveness of the

function ¢ in any significant manner.
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CHAPTER 15

A CONTROIL FUNCTION FOR CONTROLLABLE LINEAR

SYSTEMS WITH EIGENVALUES O,A,-A
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1. Derivation Of A Control Function For The Third Order System

With Eigenvalues O, A, -\.

In the preceding chapter we developed certain aspects of a
general theory of control functions. This theory was first
illustrated in Chapter 15 where we obtained a control function for
a third order system with three zero eigenvalues. In the present
chapter we shall use the same basic approach to obtain a control

function for the third order system

X1=€
5(2 =Mt €, A >0 (1)
i5 = —Xx5+ €,

where €, the control parameter, may take on the values + 1, and

A 1is real. This system was discussed extensively in Chapter 9 of
this Final Progress Report [FPR] and the reader is referred to it for
the equations of the switching surface and the definition of the
auxiliary variables used below.

Denote the system (1) by S and the system

+€, A>0 (2)
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by S¥. We recall that our procedure requires that before we attempt
to define a control function for the system 8 we first find a con-
trol function for the system S¥. We shall therefore start by
addressing ourselves to this lower order system.

The function
elz sgn(-xl) (5)

is clearly a time-optimal control function for the system
S¥¥; x =€, €=+1. (4)

We shall use the function el to define a control function for the
system S¥*.
Associated with the system S¥ are the auxiliary variables

(FPR, Vol. 1, Ch. 9):

y1= ﬁ Zl= —Xl
yo= -1 +e (XX2+ 1) 2= -[1 + e (xxe—l)]
which reduce 8S* +to canonical form when € = +1 and € = -1, re-

spectively. We shall refer to the transformation from the x's to

the y's as (5A). The inverse of (S5A) is given by
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1, M

xp= 3 le Myt 1)-1] (6)

and the transformation which gives the z's in terms of the y's

can easily be found to be

Zl: _yl

Xyl Xyl
Z,= -[1 +e ((y2+ 1l}le -2)] (7)

It is easy to see that the controllable region in the (xl,xz)-

space for system S* does not consist of the whole of phase-space,

but only of the strip [x2| < % (Fig. 1). ©Points lying outside this

strip cannot be controlled with |e]

A

1.

— — — — e r— — et

— — — — —  —— — —— —




The line x,= - % is mapped by (5A) onto the line Yp= -1l.

-Xy
The line x.= % is mapped by (5A) onto the curve Y= 2e .

2
The origin is mapped into the origin. Hence the shaded region of
Fig. 1 is mapped onto the shaded region in Fig. 2. This, then, is

the controllable region in the (y,,¥,)-plane.

At

=

FIGURE 2

The switching curve for system S% is made up of two leaves

given, respectively, by

Rll: ¥y <0, Vo = 0
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The equations of ng, when written in terms of the y's, take

the form

Xyl Xyl
Rt vy >0, -[1 +e ({y2+ l}e -2)] =0

or
2Ny R4
vy, >0, e (y2+ 1)-2e +1=0 (8)
AY
Solving for e yields
e)"yl_ 1 _+._ \ _y2
1+ Yo

Clearly Yo must satisfy Yo < 0. On the other hand we see from

Fig. 2 that on R we must have Yo > -1 if the leaf in question

12
is to lie within the controllable region. Thus -1 < Yo <0 on

R

12° 1
If -1<y,<0 then Iy2|2 > |y2| whence
1
2
L-Voy, 1=y,
1+ T 1 - [y, <1
Yo Y2



)»yl

However, Yy >0 on R which implies that e >1 on R

12’ 12°
It follows that the proper leaf is given by
1
2
AY 1 +V-y 1+ |y,
R, 5t >0 e Lo 2 _ 2 - 1
120 Y17 "1y, T1- v, =
2 2 15(- )2
Y2
or equivalently
_2)\,y1 —)\yl
Rt ¥y >0, y,= -e + 2e -1 (9)
On R12 we thus have
dy Ay, AT dgy -\Y ~\Y
y, >0 =F=2e e T ); —2 =% I1-ze 1),
1 dy 2
1 dy1

Hence on ng, Yo is a monotonically decreasing function, yé(O) =0,
yé(yl) -0 as y;— ;3 yg is negative in a neighborhood of the
origin, positive for ¥y large enough and zero at yq= lg%—g . It
follows that the leaf ng has the aspect depicted in Fig. 3. The
situation in the (zl,zg)—plane is identical except for the fact

that R12 would be replaced by Rll and vice versa and that the

sign of € in corresponding regions would be reversed.
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FIGURE 3

Let P(xl,xg) be an arbitrary point in phase space. If xl% 0
then either el(xl) =1 or el(xl) = -1.

Suppose €,= 1. Then x, < O, whence ¥y < 0. It follows from

1 1
Fig. 3 that € =+ 1 if Yo <0 and € = -1 |if Yo > 0. Thus
Yo <0 => €=+1
€= 1=> => ¢ = sgn(-y,) (10)
¥, >0 => €= -1
2
Suppose €1= - 1. Then zl < 0. Hence
25 <0 => €e€=-1
€= -1 = => € = sgn z, (11)
Z, <0 => € =+1



Let
—nkxl
h2(xl,x2,n) = - + e (XX2+ 1)

then clearly

h.(x

) l)X2)+ l) = ye; h2(xl’x2,-l) = -2'2

Define

* = -
o (xl,xg) h2(xl,x2,el)
then clearly

= g *
eQ(Xl’XQ) “gn o

(12)

(13)

(1k)

is a time-optimal control function for the system S¥.

For a more complete exposition of the phase portrait of the tra-

Jectories in the controllable region in the (yl,y2)—p1ane the reader

is referred to the Appendix to this chapter. This detailed phase-

portrait, while of some interest in itself, is unnecessary for the

discussion which follows.
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The auxiliary variables for system S are given by (FPR,

Vol. 1, p. 107)

1T A" 17 ™
~kxl kxl.
yo= -1 +e T(axyt 1) 2= -(1 +e “(Axy,-1)) (15)
. )‘Xl —xxl
= l + - l T e -
Vs e (- 1) z2z= =(-l+e Tt 1))
Let
~nkxl
h2(xl’x2’x5;n) = -n+e (kx2+ n) = h2(xl,x2,n) as given previously
by (12), and
(16)
nkxl
hy(x):%5,%53m) = n + e (hxz-n)
Then clearly
hi(xl,x2,x3; +1) = v, 1=23
hi(xl’XZ’Xj; - l) = _ZiJ i=2,3 (17)

Define
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01 (Xl)xg)x}) = ee(xl)xg))

Gg(xllxz)%) = h2(xl’X2’x3} Ul)) (18.)

UB(Xl}XE)xB) = hB(Xl)Xg)xBS cl)

Following the procedure developed in Chapter 14 we note that
(Xl’XE) are functions of (yl,yg) and that therefore €2<X1fxg)
can be viewed as a function defined in the (yl,yg)-plane, Iet Z¥
be that subset in the controllable region in the (yl ,y2)—plane for

which €,= + 1. The set X* is the horizontally shaded region in

2
Fig. 3. We denote the y5-axis by Y3 and define X as the Car-
tesian product ¥ X ¥5. Consider the leaves R21 and R22 of the

two-dimensional switching surface of the system S as imbedded in
the (yl,yg,yi)—SPace. It was proved in Chapter 1L that I con*tairs

the leaf R is divided by it into two distinct parts and does

22’

not intersect the other leaf. Furthermore, the leaf R22 is

parallel to the yl-axis.
In a completely analogous fashion we note that (x X are
1’72
functions of (z_,z.) and that therefore e is defined in the
1’72 2
(21,22)—p1ane. Let I%*¥ be the set of points in the (zl,zg)nplane

for which €y= ~1, 1let 25 designate the 25 -axis and let

_59_



T THX 3 1 . .
2 = X Z3. Consider the leaves R21 and R22 as imbedded in

_ . . .
the (21,22,23) space. Then X' contains the leaf Ry, 1is

divided by it into two parts and does not intersect the other leaf.
Furthermore, R21 is parallel to the zl—axis. Finally we note
for future reference that the equations and inegqualities which de-
fine R22 in the space of y's are identical with the equations and
inequalities which define R2l in the space of z's except for the
interchange of y's by z's and vice versa. The last assetion follows
from the fact that the transformation from the y's to the z's is
involutory and can also be seen directly for this special system by
referring to FPR, Vol. 1, pp. 109-110.

The leaf R,, is defined in the space of y's by (FFR, Vol. 1,
p. 110)

( Kyl y2—y§"y2y§
e < oy
2

2 . .2
R, < Yo¥st Yp¥st Yo < O (19)

2
(y5-3p% ¥o¥5)" + byys= 0.

’ * -
If P(yl’yz’YB) € R, CZ then (yl,yg) € Z¥ whence -1<y, <0,
Solving the last equation in (19) for Vs yields two branches,

yg and ygl > 1in the (yz,yB)—plane, whose equations are given by
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—— 2
y5 = 2 = 2 2 (20 )
(1 +7v,) 1 +y,)

2 — 2 3/2
11 _ Yo Vo WpV¥y ¥y - ¥pt 2(wyp)

y = (21)
3 . 2 2 :
(1 +v,) 1 +y,)
1
Let ¢ = (-y2)2 As y, ranges from O to -1, & ranges from

0 to 1. Moreover, dg/dy2= -;/eg and

1_¢ T ¢°

Yz = 3 ¥ =
> (+e)? > a-e)

Hence
dyg 1 dy§1 1
W (1 +¢) ’ vy, (1-¢)
and

21 2 11
sz . Y s

2
avy e+ e) as 2e(-e)
Thus
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I IT I 1 IT
yj(O) = V3 (0) = 03 yz —j and V3. 2t ® as y, »-l
I II
d
. =
dy, | ¥p dy, | Y5
dyI dyII
——5—-—>—l as Yr = =13 —2——9-0) as y, —»-1
dy2 8 2 ? dy2 2
21 2 1T
a7y d7y
2 <0, —2—>0 forall y.e(-1, 0)
2 2 2
o R

A geometric representation of and y%I is given in Figure ..

I
3

| A3

FIGURE L4
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The leaf R,, satisfies the inequality (see (19))
o5t yo¥s* ¥,) <0 (22)

However, since y, <0 on R (22) may be replaced by

227
Y3t ¥zt Vo = ¥5(1 4 y,) 4y, >0 (23)
I
On the leaf y3 we have
I §2 2y .2 2§5

y3(1 +3,) + yp= 3 (1-87)-" = - 7 <0, €€ (0,1)

(1 +¢)

I . . . . II

Hence ys is a spurious branch. The proper branch is given by yS

. 2
Let flyy3) = ly5(1 +y,) ¥,17 + byyyy

il

yg(l + ye)2 * 2y, (v, yst yg (24)

and y§I

Then f <vanishes on . Moreover,

I
I3

o

o

2
5 = 2y5(l + y2) + 23’2(1"3’2);

whence
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3—5; 1= M2 <0

Y3
of 3/2
8y5 y:}[I 2

1 1
(- Y, 0) = ;>0

Hence sgn f(yg,yB) and sgn(-f) are as shown in Fig. 5.

A%

W\ -4
N

FIGURE 5
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Finally, sgnl -f(ye,yB) . (yB- y;:)] is displayed in Fig. 6.

Projection of R
’ 22 >

in (yg,yB)—space

sgn[ -1+ (y5- y;)] = senl-Fly,,v5)]

FIGURE 6

Thus, the function sgn[-f-(yB— y;)] assigns opposite signs on
the two sides of the switching surface within the set X. Therefore
it (or its negative) could serve as a switching function within the
set 2Z. All that remains is to check the validity of this function

for a single point within X. We shall assume for the moment that
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sgn[-f(ye,yB)‘- (y3— y%)] is indeed a correct switching function
within the set = (more exactly, within that part of the controllable
region which lies in IZ).

Let £(y,,¥5) - (¥5- y;) = F(vp¥5). Then the switching func-
tion within X is simply sgn(-F(yg,yB)).

It follows by complete analogy that the switching function within
Lt is sgn(F(zg,zj)). We take sgn F rather than sgn(-F) in order
to account for the fact that the value of € in corresponding regions

of £ and EI' is reversed (Fig. 7).

Iiit=

FIGURE 7
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We have, by definition,

F(yp:¥5) = £(yp55) + (v~ y;) (25)

Therefore, by (24) and (20),

y/2

2
Vo Yo 2y
2

)

2
Flypovs) = Uys(1 +35) 3,17 + by} - Gy o
2

(26)

whence

F(ZE’ZB) = {[25(1 + 22) -22]2 + 42225} - {2z -

Clearly

Flzg,zg) = ([=(-25)(1-(-2,)) + (-2,)]°

(<202 + (-2,) -2(-2, /2

(1-(-2,))°

+ b(-2)(-25)) + (=(2) -

(28)
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and therefore

F(Z2,ZB) = G(_ZE’—Z3)’ (29)

where

2+ e,m 26,0/°
5 }
)

2
G(§2;§3) = {[—éj(l—gg) + gg] + hg2§3} . {_§5_ o
2

(30)

It is obvious from the above discussion that sgn G(_ZQ’-Z5)
is a control function within the controllable region contained in
It

The reader can now easily convince himself that a control func-
tion throughout the controllable part of phase space (except for a

set of three-dimensional measure zero) is given by

M
I

sgn g, where

Q
!

= -(1 + ol)F(02,03) + (1-01)G(02,03)- (31)

It seems helpful at this stage to list together the definitions
of all the components which enter into the definition of o¢. They

are:
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;= sen(-x;)
h(x,%31) = - n+e (xytn )

nkxl
by (%) %p,%55m) = n+e “(xg-n)
ez(xl,xz) = -sgn h2(xl,x2,el)
cl(xl,xz,x3) = ee(xl,xz)
op(x)%p%5) = By(x),355 o)

05 (%) 5%, %5) = Bs(x),%5,%55 0y )
£2-¢ -2(-¢, )/

(1 + gy

F(6p 65) = ([E5(1 + £5)-6,0% hepes) - (&5 - )

2 3/2
§o * E5-2E5

Oty E5) = ([-85(1-t,) + 1%+ heyes) - (-5 )

(1 - ¢,)°

Q
1

_(]_ + Gl)F(G2’c5) + (1—61>G(62’03)
€ = e5(xl,x2,x3) = sgn o.

The proof above was based on the assumption that sgn[-f(y2,y5) .
I
(y3— yz)] was the correct switching function within the set =,

I
rather than sgn[ + f(y2,y3) . (y3- y3)]. Thus, up until now, the
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switching function is undetermined as to sign. This sign could be
determined experimentally by simulating the system for just one set
of initial values. We can also show mathematically that the sign re-
sulting from the above assumption is indeed correct. This is done

as follows:

Consider an arbitrary trajectory which meets R Suppose its

22°

first point of intersection with R2 is P, where P in an in-

2
terior point of R22. Just after reaching P the value of ¢ is

+ 1. BSince the value of € must switch from -1 to + 1, or vice
versa, at points where a trajectory first meets a switching manifold,
the value of € must have been -1 just before the trajectory
reached P. Hence, if sgn[+ f(yg,ya)-(yj—y§)] is the true switching
function in the set X, the + sign must be determined so that

+ f(yg,yB) is negative just before the trajectory reaches P. 1In
making this assertion, we also use the fact that y%I > y% .
From the fact that f(yz,ys) =0 at P, we thus see that +

must be determined in such a way that

% [ 20,v5)] 2 0, (32)

where the differentiation is carried out along the trajectory (with
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€ = -1) through P and evaluated at P. Now the equations of

motion (for € = -1) when expressed in terms of the y's are as
follows:
M4
dt
dy, “AYy
oo - e + ex(y2+ 1) (33)
dy Ay
—_ — l - —
d—zt = - 2\e 2>»(y5 1)

The reader may verify these equations by differentiating the equa-
tions (2.6) on p. 108 of Vol. 1 of FPR and reducing the result with
equations (2.4) and (2.5) on p. 107 of same.

We thus have

or, Yo oar T

d

where the values of dy2/dt and dy3/dt are obtainable from (33).
We need to carry out our argument for only one particular point P

. . . _ 1 3
on R22. A convenient choice for P is ¥y= 0, Yp= - 3> yj- 1.

It is easily seen that this point does indeed lie on R2 for it

2)

satisfies the two inequalities and the single equality characteristic
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. _ 2
of R,,. Since f(yg,y5) = (y3—y2+ y2y3) + hygyB, a short calcula-

tion shows that at P

3 o _
4 and a¥5 =

NI

while, from (33), we find that at P

dy. dy.
2 _ 1 3 _
at - "0 > 8nd = =2

Hence, from (34), we obtain

%;[i £(y,,¥5)lp = 2 [h(-%x) + %(-2x)] = 7 3\

But since A > 0, we see at once that (32) can be satisfied only if

7 = *, or, in other words, only if + = -, as we wished to show.

2. Appendix to §l.

The Phase-Portrait Of System (2) In The Controllable Region OFf

The (yl,yg)-Plane.

In the region Xx¥, where €2= + 1, all trajectories are parallel

to the yl—axis. In the complementary region, where ¢.= -1, the
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trajectories form curves whose equations are given by:

-2xyl —Xyl
y2= € (yg(o)—l) + 2e -1 (35)

Note that in (35) the time t has been eliminated; the argument
in y2(0) is y;, not t.

In that part of the controllable region where €,= -1, we have

0< y2(0) <1 (Fig. 3). ILet l—y2(0) =p. Then 0< pu<1l and

dy =AY
2 1
dyl = 2)e [pe

_ky
1 "1] -

_.Xy
The function g(yl) = pe 1 -1 is monotonically decreasing.

It has exactly one zero at

bl L

y‘:’i = log u.

It is easy to see that y¥<0, y¥->-0 as u =0 (i.e., as

ye(O) —-1) and y? -0 as p -1 (i.e., as y2(0) - 0). Moreover,

2

dy -\Y

—.T2 = 2X2€‘ l[l—2pe
dyl

)
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2
so that dzye/dyl is monotonically increasing and has exactly one

zero at

>

1
% = 2u = + = .
yl log 2u yi X log 2
It follows that yf is a point of relative maximum while yf* is a
point of inflection.
To find the point of intersection of a given trajectory with

R substitute y,= 0 in (35). One gets

11’
2y 1aVy(0)
1 - y2(Oj_ - 1 :'/y (0)

However, since < 0 at the point of intersection, we must have
2 yl p

_Xy
e 1>1 at that point. Therefore, the point (y{ , 0) at which
the given trajectory intersects Rll is given by

- 1

Moo

e

1-N :Y2(O)
Clearly yi — -0 as yE(O) — 1 and yi -0 as y2(0) — 0. The

~Th-



complete phase portrait is displayed in Fig. 8.

: FIGURE 8
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CHAPTER 16

ON A CONTROL FUNCTION FOR CONTROLLABLE LINEAR

SYSTEMS WITH FOUR ZERO EIGENVALUES
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l. Preliminaries

We have spent considerable effort in attacking the problem of
optimalycontrol for controllable fourth order systems having eigen-
values 0,0,A, -A. The case ) f O appears to be quite difficult
though not hopeless. 1In order to gain experience, we have considered
the case A = 0. Here our general method requires the analysis of
the three-dimensional switching manifold given by (31) of FPR,

Vol. 1, p. 33. 1In particular it is necessary to study the last equa-

tion of this chapter, which, for convenience, we reproduce here.
2.4 2 gyB 2.2
288 (T2yyy, - My oy, - 288y, + 812 yoy

+ 307ygyi - 71+hygy;y,+ - h25ygy§yh - 583%5L (1.1)

+ 1927,55) + 16(2581}ys + usyly?) + 361520 - o,

We are particularly interested in studying the manner in which this
equation defines yh as a function of Yo and y3.

The equation is seen to be homogeneous of weight 20 in the y's
if Yo is given weight two, y5 weight three, and yh weight four.
Hence we may obtain a more convenient form of the equation. if we

set
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=-—=— and { = (1.2)

2
L
73
2
Y2 YZ
where we have introduced the numerical constants 12 and 4 because
they seem to make the resulting equation have smaller coefficients.
If we divide (1.1) by yéo and introduce the notation defined by

(1.2), we find that (1.1) is equivalent(when ye% 0) to

e*-(26 + 18)ED + (436 + 614)E2 - (1,116¢% + 2,550¢ + 912)¢

+(861+§5 + 2,581§2 + 1,772t + 361) = 0 (1.3)

and our problem thus reduces to the study of the four roots of the
fourth degree equation (1.3) in ¢ as functions of £.

We rewrite equation (1.3) in the form

e v - ceva=o, (1.4)
where

a =2t + 48

b = 436t + 614 (1.5)

(e]
I

1,116g2 + 2,550t + 912

86ug5+ 2,581;2 + 1,772t + 361.

o]
It
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We started out with the conjecture that equation (1.3), except
for ¢ = 0, always has just two distinct real roots, A well known
necessary and sufficient condition that a quartic such as (1.4) have
Jjust two distinct real roots is that its discriminant A be always

negative. A may be written down in various ways. For instance,

1 -a b -C d 0 0
0 1 -a b -C d 0]
0 0 1 -a b ~-C d
A = 4 -3a 2b -C 0 o] 0]
0 i -3a 2b -c 0 0
0 0 4 -3a 2b -C 0
0 0 0 4y <3a 2b -c
A= —27ahd2 + 18a3bcd - Aa§c5 - haebad + a2b2c2 + lhhaabd2 - 6a2c2d

80abZcd + 18abc’ - 192acd® + 16b4A - kboc® - 128b23° + 1hhbe2d

-27 c)‘L + 256d5 .

- n(k2 3 2.3 .1 8 2 2.2
A—h(;b - ac + 4d) -2"((-27’0 +5abc+3bd-c-ad) .

Hence the question can be settled definitely in one way or another

by substituting (for a,b,c,d, in any of these formulas for A) the
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expressions given by (1.5) and thus obtaining A = A({) as a poly-
nomial in € . If our conjecture were true, the equation A(t) =0
should have had no real roots, except for a double root ¢ = 0,
and A(C) should have been negative for all real t f O. This,
however, is not quite the case, as will be shown in the following
section. The calculation of A(Q) was carried out by G. Campbell
whose fortitude won our unqualified admiration, for the task turned
out to be extremely laborious. It took some time to obtain A(¢) in
a form free from error as indicated by a system of various checks.
In the meantime we managed to run up several blind alleys. These
are indicated below for the sake of completeness.

First, it is clear from the third formula given above for A
that a sufficient condition that A< O is that %b2 -ac + 4d <O.
It is much easier to compute %bg - ac + bd in terms of ¢ than it
is to compute the full expression for A. It turns out to be a cubic
polynomial in ¢ which vanishes when ¢ = -L4.46 approximately and
which is negative when ¢ < -4.46. Hence equation (1.3) does have
exactly two real distinct roots for ¢ < -L.L6.

Second, it is obvious geometrically that (1.3) cannot have more

than two real roots if the left member of (1.3) is a convex function
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of &, d.e., if its second derivative l2§2 - 6at + 2b never changes
sign. This will be the case if the discriminant of the quadratic
function 652 - 3at + b is negative, i.e., if 9&2 -24b <0 or

3% - 8b < 0. This is found to be satisfied for values of ¢ be-
tween approximately .7 and 241.9.

Third, we carried out a machine calculation of the roots of (1)
for all even integral values of £ from--500 to + 500; and it was
found that in each case (except for ¢ = O, of course) “there
were exactly 2 real roots and 2 complex roots.

None of these observations yielded sufficient information.

2. Study Of The Equation For The Three-Dimensional Switching Mani-

1

fold For The System x, = €, X, = Xys x3 = X5, x, = x3.

The equation referred to in the section title is equation (1.1)
of the present chapter. This equation was reduced by means of the
substitution (1.2) to the somewhat more tractable form (1.3). Our
problem thus reduces at first to the study of the four roots of the
fourth degree equation (1.3) in ¢ as functions of ¢ .

When ¢ = O, +the left member of equation (1.3) may be written

as a perfect square (§2- 2Lt + 19)2. Hence for ¢ = 0, (1.3)
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admits two pairs of double roots 12 i5'J5 all four roots being real.

As mentioned above, we conjectured at first that equation (1.3)
would admit just two real roots and a pair of conjugate complex roots.
This conjecture was supported by some elaborate numerical computa-
tions carried out on a computer and also by some theoretical work
which proved that (1.3) actually does have just two real roots and
a pair of conjugate complex roots as long as { was restricted to
certain specified intervals. We now know, however, that the conjec-
ture is false if and only if -4 = § s -100/27 = -3.70370370... .
We also know that the curve whose equation is (1.3) has cusps at the
points t = -4, & =-7, and ¢ = -100/27, & = -19/3 and that the
curve also has a double point at ¢ = -125/32, £ = -27/4. On the
open interval -4 < t < - 125/32, equation (1.3) has four distinct
real roots) three negative roots and one positive root. The same is
true for the open interval -125/32 <t < —100/27. Notice, however,
that the whole interval -k = ¢ = -100/27 where our conjecture
turns out to be false is very short. Indeed its overall length is
only 8/27.

These facts were discovered and established with the help of the

discriminant
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h 2

A(E) = -27a™3° + 18abed - hade - 182173 + afp2c? + 144a"ba®
- 6a2c2d - 80ab2cd + 18abe” - 192acd2 + l6bhd - ub3c2
- 128b23° + 1hhbe’d - 27c“ + 256d5, (2.1)

which has already been introduced above. Here a,b,c,d, are the
same as in (1.5)

A necessary and sufficient condition that (1.4) have just two
real distinct roots is that A< 0 and it is also well known that
A vanishes if and only if (1.4) has a multiple root. Hence we
calculated A as a polynomial in { by substituting in (2.1) the
values of a,b,c,d given by (1.5). A must, of course, vanish at
£ = 0 to the second order because, as we have already pointed out,

for ¢ =0 our equation (1.3) has two double roots. Hence we are

Justified in writing A in the form

A= £7F(t) (2.2)

It required a very stupendous calculation to find the polynomial

F(t). But we eventually found that

8%-



6

F(¢) = 322,L86,a72(0 + 9,972,1440,064¢T + 134,895,988, 656¢

+

1,042,527,851,808¢> + 5,054,833, k27, 200t

+

15,559,336,960,000§3 + 30,047,296,ooo,ooog2
+ 33,152,000,000,000t + 16,000,000,000,000

(2.3)

After still more harrowing adventures we found that F(f) could

be factored into linear factors. Namely,

F(t) = 1682 (32t - 3)°(27£-8) (2.1)
where

t = ¢+4 (2.5)
That is,

F(t) = 16(¢ + 4)5(52c +125)%(27¢ + 100)° (2.6)

It seems undesirable to burden the reader with the many details
leading to the discovery of the factorization of F as exhibited

in (2.4) or (2.6). It is indeed burdensome for him to verify the
correctness of (2.6) a posteriori by multiplying out the factors but

not as much so as a detailed discussion would be as to how the

8



factors were discovered in the first place.

It is seen immediately from (2.6) that (1.3) has multiple roots

when § = -4, { = - l%g , &= - lgg . These multiple roots all

turn out to be double roots and they are, respectively, & = -7,
2 1

g=-——E, and g=-—%.

In order to verify these facts it is desirable to use (2.5)

and the further substitution
=T +E -2t (2.7)
to write (1.3) in the somewhat simpler form
W+ (B1-8B0 + (1262 - 32t + un2 4+ (258 - %0

P2 P) -0 (2.8)
Incidentally, by neglecting all terms in (2.8), except those of

lowest order, we cobtain A = + %‘J%B + «.., Wwhich shows that the

curve whose equation is given by (2.8) has a cusp at the origin.

This corresponds to a cusp at ¢ =-4, & = -7 in the curve whose
equation is (1.3). The latter curve also has a cusp at £ = - lg% »
E = - l% » as it would be possible to establish in a similar manner.

But this fact can also be deduced more readily by inspection of (2.6).
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Details are left to the reader.

In order to study the curve given by (1.3) for large values of
¢ and { it may be noticed that the left hand side of (1.3) is
almost divisible by £ -2 ~-1. 1In fact, if we attempt to carry

out such a division we get a quotient
3 2 - 2
Q(E, L) = E7-UTE™ + (3L2L + 567)E - (43207 + 1,07h{ + 315)
(2.9)

and a remainder

R(E) = (¢ +4)° (2.10)

Hence, if the left member of (1.3) is denoted by F(t,t), we have

F(e,t) = Qe ¢)(e-2¢ -1) + (£ + 4)° (2.11)

Thus at any point on the straight line € = 2f + 1, or on the curve
whose equation is Q(f,f) = 0, we must have F(,f) = (¢ + h)g z 0,
with the equality sign holding if and only if ¢ = -4. It follows
that for those values of f where the equation (1.3) has just two
real distinct roots (which it does except for -4 = ¢ = - 100/27

and for ¢ = 0) the points of the curve F(¢,f) = 0 must all lie

either completely below the straight line € = 2f + 1, as in the

-86-



case for § >0, or completely above the straight line ¢ = 2¢ + 1,
as in the case for ¢ < -4. A similar statement may be made with
regard to the curve Q(&,f) = 0. But it is best to confine atten-
tion not only to those values of ( for which F(¢,t) = O has

Just two real roots but alsc for those values of ¢ for which the
cubic Q(g,g) = 0 has just one real root. It is easy to plot the

curve Q(&,¢t)

O Dbecause, although it is cubic in &, it is only
quadratic in f. Thus we may use the guadratic formula to solve

Q(t,t) =0 for ¢ in terms of ¢. The result is

£ = T [576-179 + VB(£)) (2.12)

where p(t) = u853 + 995g2 + 6810¢ + 15481. Since p(t) = O has
three roots at approximately & = -7.8, -6.9, and -6.0, we see
that the curve Q(,{) = O consists of a "main" branch (reaching
from a point where ¢ = -6.0, approximately, to points where

E -+ oo) and of an isoclated tiny oval (extending from a point where
¢ = -7.8 to a point where ¢ = -6.9 approximately). If we restrict
attention to values of ¢ < -5 or >+ 1, we not only eliminate all
necessity for considering this little oval, but we also eliminate the
points near { = O where the equation Q(&,f{) = O has three instead

of only one real root. See figure 2.3

-87-



For ¢t >1, then, the curve F(E,f) = 0 lies completely
above the curve Q(¢,t) = O. For ¢ < -5, the curve TF(&,t) =0
lies completely below the curve Q(€,t) = O.

In order to get the somewhat more exact information needed in
the next section we must refine the above argument to a certain ex-
tent. What we now do is to divide F(t,t) by (¢ -2t -1 -0 )

thus obtaining a quotient
3 2 2
Q(E,850) = &7+ (o-U7)E+ [(o =60 + 567) + (20 + 342)C]E

+ [(P- 450%+ R10-345) + (ho™r 2520-107H)¢ + (Mo - 432)¢°]

(2.13)

and a remainder

R(L,0) = (¢ +4)% + o822 + (120 + T6)t° + (66> + 1660 + 220)¢
3 2
+ (- bho™+ 4760 + 176)] (2.14)

so that

F(e,t) = (e, t;0)(6 - 2¢ - 1 -g) + R(¢,0) (2.15)
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It is to be observed that (2.11) is a special case of (2.15) with
o = 0.

Tt is also important to observe that although R((,0) is al-
ways positive, it is also possible to make R({; o) negative
for sufficiently large |[t| simply by choosing the sign of o to
be opposite to the sign of (. This is because the term of highest
order in the expression for R(Q; o) is 80(;5 . Thus, for every
€ >0, it is possible to choose ¢ such that |o| < € and such
that R(g; o) is negative for t sufficiently large in absolute
value and with the proper sign. If for such a { we choose a point
(gl,;) which lies on either the straight line ¢ =2f + 1 + ¢ or
on the curve Q(&,f3y0) = O, we must have F(gl,g) = R(t30) < O,
whereas, of course, if the point (go,g) lies on either the straight
line € =2¢{ +1 or on the curve Q(&,t30) = 0, we must have

F(E,¢)

R(t;0) > 0. Hence there must be a number ¢ between £

and such that F(&,t) = 0, that is, such that the point

gl
(€,t) 1lies on the curve F(t,t) = 0. This amounts to saying that
for ¢ sufficiently large in absolute value and with proper sign

there is a branch of the curve F(g,g) = 0 which lies between the

two straight lines £ =2{ +1 and &€ =2 +1 + ¢ and also a
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branch of the curve F(t,f) = O which lies between the two cubics
Q(g,6) =0 and Q(g,¢50) = 0.

In the former case, as |t| - oo, we have gl— 2t =1 + 0 and
E, - 2t = 1. Since |o] may be taken arbitrarily small, this means

that ¢

2f -1 as the point (&,{) recedes indefinitely along the
branch of the curve F(g,g) = 0, which lies between these two straight
lines.

In the latter case, when (gl,g) and (go,g) are points of

Q(E,¢30) =0 and Q(t,t) = O, respectively, we see from (1l.14) that

lim £ _ L, N3
£ -+ o g52”"56

e}

We also have an equation like (2.12) which applies to Q(t,t,0) =0
instead of to Q(g,g;o) = 0 and which can be written down when we
solve the equation Q(g,g;o) =0 for { in terms of £ by use of

the quadratic formula. We are thus enabled to prove that

1lim g__7_ S S
E-to0 32 = 518

1

Taking { +to be positive and o to be negative and remembering that

a branch of the curve F(t,t) = 0 1lies above the curve Q(&,f; 0) =0
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and (for sufficiently large ¢) below the curve q(g,g;o) =0, so

that

t 4
. 3/2 ” /2 >g572 ’

0 = 1

we see that, on this branch of the curve F(¢,f) = O,

lim sup . iim _Aii

ts® 3/2° o0 .372°36 (2.16)
: £,

and that

lim inf . lim L1
£ - oo g572 = t-oow 3/2 N

S

Since this last relation holds for all negative ¢, we find, by

letting o approach zero, that

1im inf 1im 1 J3
%— 2 T o] 2.1
t - oo g322 6 =0 5 T8 36 (2.17)
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; 1lim .
Hence, from (2.16) and (2.17), we see that £ > oo §37§ exists

V3
36

Similarly, by taking { to be negative and o positive, we

and is equal to

can show that on another branch of the curve F(§,t) = 0, we have

1im _ V3
£ » -0 g372‘ 36

I

FIGURE 2.1
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This figure (2.1) illustrates the main features of the curve
whose equation is (1.3). The scale on the two axes is, however,
slightly distorted so as to make the picture reasonably artistic.
Actually the straight lire, which is an asymptote to two branches
of the curve, should have slope 2 instead of 1. The detailed be-
havior of the curve near the point A, whose coordinates are

(¢ = -7, ¢ = -4), can not be depicted on such a small scale. It

is shown in Figure 2.2

FIGURE 2.2

This figure illustrates the cusps at the points A and B and

_95_



the double point at C. The straight line segment marked I repre-

sents a small piece of the straight line in Figure 2.1, also marked

L . The three points A,B,C are extremely close to each other on

£

the scale of Figure 2.1.

e

]
FIGURE 2.3

This figure illustrates the curve Q(&,t) = O, and the straight
line & =2¢{ +1 marked L, to which the curve F(&,n) = 0, shown
in Figures 2.1 and 2.2 is asymptotic. Notice the little oval near

the point A. No attempt is made to maintain a thoroughly consistent
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scale.

3. Identification Of The Proper Ieaf RBl

Our object is to obtain a closed form control law for the

system

Sh: X =€ X5 = x5 x5 = X x)+ = x}, € =+ 1.

In Chapter 14 we outlined a general scheme for the solution of this
type of problem. The procedure, as applied to the present problem,
may be summarized as follows:

Consider the system

85: kl =€, X, = )5 kB =Xy, €=4 1

and assume that a closed form control law € = €3(X) for the system
85 is known (it is — see Chapter 13). Associated with the system
Sh are two sets of auxiliary variables (yl,ye,yB,yh) and
(Zl’ZQ’ZB’ZM) defined in accordance with our general theory (Chapters
1 and 4 in Vol. 1). We assume that (yl,y2,y5,yu) and (21’22’23’Zh)
are so chosen that (yl,yg,yz) and (21’22’25) form an appropriate

set of auxiliary variables for the system S..

3
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The transformation from the space of (Xl,XE,XB) to the space
of (yl,y2,y3) is well defined — and, in fact, invertible — in
a neighborhood of the origin. The function GB(X) may therefore
be regarded as a function of (yl,ye,yB) in a neighborhood of the
origin of the space of (yi,yg,yz). Let I* be the set of all
those points in the space of (yl’y2’y3) at which the function <—:3
takes on the value of + 1. ILet X be the subset of the space of
(yl,yg,yB,yh) obtained by taking the Cartesian product of I* with
the yu-axis. Denoting the yu—axis by YL, the set X may be re-
presented symbolically by X¥ X Yh.

The switching surface of system Sh is a three-dimensional
manifold denoted by R3' It is composed of two leaves, RBl and
R32, in accordance with our general theory (see Chapter 1, Vol. 1).
We have shown (see Chapter 1k) that RBl’ when imbedded in the space
of (yl,yg,yB;yu) be means of the transformation which carries the
x's into the y's , is wholly contained within the set . The
leaf RBl’ when so imbedded, has the following properties: (1) it
is & cylindrical surface, parallel to the y,-axis; (2) it separates
Y into two distinct parts; (3) its boundary lies on the boundary of

Y. In the sequel, R will always be conceived of as imbedded in

31
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the set Z.

The crux of our method consists in the fact that a closed con-
trol law for the system Su can always be derived from a control
law valid solely in the set Z. It is therefore sufficient to re-
strict one's attention to the set X and ignore the remainder of
phase space. Within X the problem reduces somewhat further. Find-
ing a control function in £ is equivalent to finding a function
F(yl,yg,yB,yh), defined throughout £, which is positive on one
side of R31 and negative on the other. We attempt to construct a
function F by making use of the equation and inequalities defining

R31° However, since R31 i

F(yl,yg,yz,yh) must necessarily be independent of ¥, In other

1)}

parallel to the yl-axis, the function

words, it is sufficient to restrict one's attention to the projections
of ¥ and R51 into the space of (ye,yB,yh). We denote these pro-
Jections by ZP and Rgl » respectively. Our problem, then, is to
construct a function F(y2,y3,y4), defined throughout ZP, which

is positive on one side of RP

31

But first we must make an exact identification of the proper

and negative on the other.

leaf RBlJ or, which is the same, the proper projection R;l « This
identification will be pursued throughout the remainder of the present

section.
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The leaf RBI is characterized by one equation and three in-
equalities. These have been computed before (FPR, Vol. 1, pp.33-34).

We repeat them here for the sake of convenience:

E<O
B
-5 > E
R3l: \ . B (3.1)
Y157
L AD-BC =
where

>
]

2
12y, [-15v} + 140y,y, - %y5)

B = 856y§y§ + 95y2 - lthyhyZ + 720y2yi - 576yhy§

B B3
_ ~
vt (3)
AD - BC = 288(72y2yh MByQyB}i 288y + 8723%

8
507ygyh 7hhy§y§yh 4253/'23/'23@L 38y,¥),

+

+

192y2y ) + 16(2581y2y5 + hh3y2y5) + 56ly
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> |t

The inequality E < -
One has
E+2<o,

whence

ys- 2v,(3) - ()
B 2
Yot <K)

+ (@) <o

Therefore

v5-29,(3) - B + yy(®) + @
B 2
v+ (F)

<0

or

B
2
vt (3)

<0

The inequality E < 0 may also be simplified.

y5- 2r,(3) - (R

<0
B
v+ (3)
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whence

B By , (By B
YB' yg(g) ) y2(A) +2(A) _ y5- y2(g) _B <0 (3.3)

ot @) vt () v+ (2)

>

Using (3.2) and (3.3) we may therefore replace (3.1) by

(o <0

B
CP"K<O

319 (3.4)

|t

yp < -

AD-BC = 0

where

o Y3~ yg(f)

(3.5)
yot ()

The functions A,B,C,D and ¢ are all independent of R

Hence the projection RP

21

is characterized by the equation
AD-BC = 0 (3.6)
and the inegualities
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<0 (3.7)

Q - f <0 (3.8)

where @ is as defined in (3.5).

Let & and { be the variables defined above, namely

12y, hyg
) 3
£ =5 C=—5
Io Yo
and let
VP

Y5t

Then (3.7) becomes

y5(1—®)

: (3.9)
yo(1 + ¢ 07)

A
(@]
-

whereas (3.8) becomes

Y3 19

-3<0 (3.10)
Yo 1 4+ § oo

where

V2P poot + 95 - 1206 + 52 - 10er

y3A © 3t{-15 + 35 - 2kt} (3.11)
3

@:
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We shall use (3.9), (3.10) and (3.11) to distinguish between the
proper and spurious leaves defined by (3.6).
As we already know from previous sections, equation (3.6),
when expressed in terms of ({,t gives rise to six real branches
in the (g,g) plane. We shall refer to them as branches I through VI

in accordance with Figures 2.1 and 2.2.
Iemma 1. @(g,g) -2 as { -+ o on branch I.

Proof: We know from the discussion in previous paragraphs that

[e-(2¢ +1)] 50 as t >+ o on branch I. Hence, on this branch,

we have from (3.11):

Hm gy gy 1Im 2090 + 95 - 120(2¢ + 1) + 5(2t + 1)°- 126(2t + 1)

(s +m o (B0 +35(20 + 1) - T20)
1lim "L}'Cg + Pl(g)
- { >+

- 2t%+ @ (1)

where Pl(g) and Ql(g) are polynomials of degree 1 in (. It

clearly follows that

(o o 0(68) =2
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along branch I.

Lemma 2. ®({,E) »2 as ¢ — -co on branch III.

Proof: The proof is the same.

Lemma 3. ®({,£) >0 as ¢ -+ o [f{ —»-00] on branch II [branch IV].
Proof: Tt has already been shown that on branch II the value of ¢

V3
36

other words, on branch II,

tends asymptotically to g5/2 as ¢ and ¢ tend to + ® . In

lim S
t -+ oo E372 T 36

We may therefore write
(- (1+0)2 2 (3.12)

where @w -0 as { -+ oo on branch II. Substitution of (3.12)
into (3.11) yields a rational function of gl/2 whose numerator is
of degree five in gL/Z whereas its denominator is of degree six in
éL/g . Since & -+ o0 ¢ -+ oo on branch II, the stated result
follows.

The proof for branch IV is analogous.
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A. The case when ¢ > Q.

When ¢ > O one has hy?/yg > 0, whence Yo > 0. Hence the
half plane € > 0 corresponds to the half space Yo >0 in the
space of (y2,y3, yh). We shall consider this half-space as divided

into two quadrants, namely (i) Y, >0, >0; (ii) ¥, >0,

3
< .
V3 0

(1) y2>0, y5>0

We have ¢ >0, whence 1 + é % > 0. Moreover, yi/y2 > 0.

Hence (3.9) is equivalent to 1-® < 0, or simply

o> 1 (3.13)

We note, furthermore, that if Yy >0, >0 and (3.13) is satis-

3
fied then (3.10) is automatically satisfied. It follows that in the
quadrant y, >0, Vs > 0 the two inequalities (3.9), (3.10) may be

replaced by the single inequality (3.13).

Lemma 4. In the quadrant Yo > 0, Y3 > 0, points corresponding to

branch I with a sufficiently large ¢, satisfy (3.13).

Proof. Lemma 1.
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Lemme 5. In the quadrant Y5 >0, y3 > 0, points corresponding to
branch II with a sufficiently large ¢, violate (3.13).

Proof: Lemma 3.

Theorem 1. The subset of Rél which lies in the quadrant
Yo >0, y5 >0 is the locus of all points (in this quadrant) which
correspond to branch I. The locus of all points, which lie in the
quadrant Yo >0, yj > 0 and which correspond to branch II, is

spurious.

Proof: Every point of R;l must satisfy equation (3.6) and will,
therefore, correspond to a point on one of the branches depicted
in Figure 2.1. Since Vs >0 in the quadrant under consideration,
f 1is positive whence every point of R;i for which Yo >0 and
y5 > 0 must either correspond to a point on branch I or to a point
on branch II. ZEvery such point of R;l will also satisfy the in-
equalities (3.7) and (3.8) or, equivalently, (3.10) and (3.11).

The last two inequalities have been shown to be equivalent, in the

quadrant y, >0, >0, to the single inequality (3.13). It

I3

follows that every point of Rgl in the quadrant Yo >0, y5 >0

corresponds to a point on branch I, or branch II, which satisfies

(3.13).
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Conversely, every point in the quadrant Yo > 0, y5 > 0 which
corresponds to a point on either branch I or branch II and which
satisfies (3.13), lies on R;l . It follows that the subset of Rgi
which lies in the quadrant Yo >0, y3 > 0 is the locus of all
points (in this quadrant) which correspond to points on the branches
I, IT and which satisfy (3.13).

It is a consequence of the above remarks, as well as Lemma 1,
that the locus of all points corresponding to branch I with sufficiently
large € is contained in R;l . Similarly, it follows from Lemma 3
that the locus of all points corresponding to branch IT with suffici-
ently large ¢ is spurious.

Iet Z Dbe the set of all { > 0 such that the points (C,EI)
lying in branch I does not correspond to points (in the quadrant
Yy >0, Vs > 0) which are contained in Rgl - Let [ De the least

upper bound of Z. We know from the preceding paragraph that Co is

finite. Let §o be the value of £, on branch I, corresponding to

Cor
The pair (go,go) gives rise, in the (ye,yB,yh)-space to two

curves. They are formed by the intersection of the two surfaces

2
WS - typ =0, >0

O
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and

2
12y), - E¥p = 05 £, > 0.

One of these curves lies in the quadrant Yo >0, < 0. The

73
other lies in the quadrant under consideration, namely Yo >0,

> 0.
3

It is clear from the definition of (go,go) that the curve
2 2
: byS . 3,5 = - =
[T by - typ =0, 2y, -eys =0, y5 >0 (3.14)

forms an edge of Rgl . This edge may or may not be contained in
R§1 depending on whether go € Z or QO ﬁ Z, respectively. Re-
calling the definition of R§1 we must conclude that there exists
a cylindrical sheet C, wparallel to the yl—axis, whose projection
in the (ye,yB,yu)-space is (_7 ; and which forms an edge of R51 .

One has:

0O _O0 _0 P
(y2}y5)yh) € X <=>

<=> there exists a y¥ such that (y"l*,yg,y;,yi) ex

<=> there exists a y¥ such that (y{,yg,y;) € o¥

(o] (o]
<=> (y2)y5) €M,
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where M 1is the unshaded region depicted in Figure 3.1l. The last
equivalence follows from the definition of X%, as well as the
detailed investigation of the switching surface of S3 as rendered
in Chapter 11 of this Final Progress Report. (The reader who wishes
to refer to that chapter should note that here we have replaced the
z's by y's throughout). It follows that the quadrant Yo >0,

Vs > 0 in the space of (yg,yB,yu) lies wholly within the interior
of ZP .

The value of Co was shown to be finite. Hence T_j cannot
degenerate into a curve which lies in the plane Yo = 0. In other
words, the curve r—7 except for the point Y= y5= yh= 0 1lies
properly within the interior of ZP .

If go > Q then [—7' lies within the interior of the quad-
rant Yo > 0, y5 > 0, whence C i; an edge of R31 lying within
the interior of Z.

In Chapter 12 of this Final Progress Report it was shown that
R5 is homeomorphic to a three-dimensional disk. R31 and R32 are
Joined along a common edge which lies on the boundary of £. 1In
particular, RBi’cannot have an edge which lies in the interior of ' Z.

It follows that gb > 0. Hence every point lying on branch I must

correspond (in the quadrant Y5 > 0, y5 > 0) only to points which are

P
31

properly ccontained in R
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We have already shown that the locus of all points in the space
of (y2,y3,yu), Yo >0, yB > 0, which correspond to points on

branch IT with sufficiently large € is a spurious locus. It is

4,
ys“
) 2 _
y3>o) y2+y5"o
FIGURE 3.1

now claimed that the statement holds true throughout branch IT, with-
out restriction to large values of { . The proof is analogous to
the above.

P .

Thus RBI‘][(yE’ 5,yLL)|y2 > 0, Vs > 0} is the locus of all
points (yg,yB,yh) which lie in this gquadrant and correspond to
points on branch I. All points in the quadrant Yo >0, y5 >0,
which correspond to points on branch II are spuricus. This completes

the proof of Theorem 1.

P .
Theorem 2. The set RBlr]{(YE’YB’yh)IyE > O,y3 < 0} 1is the
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locus of all points (yE’yB’yh)’ Y, >0, Vs < 0, which correspond
to points on branch II. All points in the quadrant Yo >0, y3 <0,

which correspond to points on branch I are spurious.

Proof: We note, first, from (3.11) that ® is a function of
(¢,€) alone. Hence, by Theorem 1,
Lé < O, 5).—5 P <0
Lo Lo
throughout branch I. Thus, if (yé,yB,yu) is a point in the quadrant
Yo >0, y3 < 0 which corresponds to a point on branch I, it does not
satisfy (3.9), (3.10) and cannot belong to 3§l . This completes the
proof of the second part of Theorem 2.

On the other hand, by Iemma 3,
L0y, L2 450
1+ ﬁ 0 1+ E ]
for all points of branch II with ¢ > Co for some sufficiently
large (but finite) ¢

Such points, then, give rise to curves which lie in R§l in the
guadrant Yo > 0, y5 < 0. However, an argument analogous to the one
used in the proof of Theorem 1 eliminates the possibility that Co > 0.
This completes the proof of Theorem 2.
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B. The Case When (<O

Investigation of this case was not complete when the present

chapter was prepared.

Note: The results discussed in the present chapter cover most of
the work entailed in the derivation of a closed control law for the
system under consideration. These results assure the possibility of
obtaining such a control law. However, a certain amount of work

remains to be done.
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CHAPTER 17

ON THE CONTROLLABLE LINEAR SYSTEM WITH

EIGENVALUES 0,0,\, -\
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On The Linear System With Eigenvalues 0,0,A,-\» (Preliminaries)

Initial Computations

We consider the system

X, = €

}_J

kp =yt (1)

-kx5+ €, x>0

ARV N
Il il

1

It is a linear system with eigenvalues 0,0,A,-\» and one control
element. Following our standard procedure we define two sets of

auxiliary variables (yl’y2’y5’yh) and (21’22’23’Zh) as follows:

%
-XXl
Yo = -l +e (xx2+ 1)
AX (2)
1
=1 +e X, - 1
Vs (x3 )
N
Yy T XT3 %
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z, = =X

1 1
+kxl
z, = -l -e (xx2— 1)
ax, (3)
25 = 1-e (xX3+ 1)
5, = ~0q* 3 Xi

The transformation (2) reduces system (1) to the form yl =1,

&2= &5 =J), =0 when € =+1, whereas (3) reduces the system (1)
to the form 24= 1, z, = 25 = Zh =0 when € = - 1. The inverse

of (2) is given by

" N
AY
1 1
x, == [e “(y,+ 1)-1]
2 "X 2 (1)
._)\'y
xs = 5 le Hyg- 1) + 1
2

while the inverse of (3) is
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1 1
AZ
X, = % [-e 1(22+ 1) + 1]
N (5)
i e, - -
Xz =3 [-e (z5 1) - 1]
== (5t 52

Equations (2) and (5) may be used to obtain the transformation.

from the y's to the =z's, namely

17 %
AZ AZ
¥,= -l-e l[(z2+ 1)e 1 -2]
e, e, (6)
V5= l-e [(25- 1)e + 2]
2
Yy, = - (Zu+ Zl)

The transformation from the y's to the z's is involutory. This
fact follows directly from our general theory (see Chapter 4, Vol. 1,
FPR), or it may be checked directly from (3) and (4). The transforma-

tion from the z's to the y's is therefore given by
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S A]

Y ' Ay

z,= -l-e l[(y2+ 1)e . -2]

Ay Ay, (1)
25= + 1-e  [(yz-1)e + 2]
z),= -(y,* ¥4).

The first leaf of the one-dimensional switching curve, denoted
by Ry, 1is given by ¥y <0, y= ¥5= ¥),= 0. 1In terms of z these

equations become

(
2y >0
Az rZ
-l-e l[(22+ 1l)e 1 2] =0 (8)
R _: -\Z -\Z
1L < +l-e l[(23—l)e Ly 2] =0
2
\ _(Zh+ Zl) =0

We now wish to eliminate zy from two of the last three equa-
tions in (8). To do this we may use the computations previously
carried out for the third order system with eigenvalues O, -2
[see FPR, Vol. 1, pp. 108-110], since for that system the elimination
was effected between two equations which are identical with the first

two equations in (8). The effect of this operaticn is to reduce the

equations and inequality defining Rll to the form
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4 2 2
zgz3+ z225+ 22 <0

le

e = (22— 2= 2225)/222
R . (9)

2
(23— z,* 2p25)" + uzgzi: 0

2.~ Z= 7%
s o+ 1 logg(_g__iﬁ) -0
4 XE 222

\

AZ
Since A > 0 the value of e 1 on R21 is less than its value

on Rll' It follows that R21 is given by

2 2
(2225+ ZEZ5+ zZ, <0

le

e < (22— 25—2223)/222

(z24= 2.+ 2.2 2 4 hp =
3 2 273 23
T~ Zy- Z.Z
z)+ l§ logg(zg———é———g—i) = 0
\ A 2

The computation of R51 requires one final task, namely: we
must express the relations (lO) in terms of the y's and then eliminate
yl between the last two equations. To say that this task is formid-

able is to indulge in understatement. At this stage we have neither

succeeded nor given up.

-117-



CHAPTER 18

ON A NEW THEORY OF ELIMINATION
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On A New Theory Of Elimination

In Chapter 5> of Volume 1, we emphasized the importance of
elimination methods for problems of optimal control, and on pp. Lo-
51 of Vol. 1, we discussed the use of the so-called Weierstrass
Preparation Theorem for effecting the required elimination. Un-
fortunately the practical application of the Weierstrass Prepara-
tion Theorem was fraught with considerable difficulty. Not only

was 1t extremely hard to obtain satisfactory expressions for the co-
efficients in the Weierstrass polynomials but, even assuming the
two Weierstrass polynomials of degrees m and n, say, were at
hand, the subsequent desired elimination involved, by the dialytic
method of Sylvester, the evaluation of a determinant of order m + n.

We have now discovered a method of by-passing both the
Weierstirass DPreparation Theorem and the Sylvester dialytic method.
It involves the evaluation of two determinants, each of order only
m or n ,(whichever is the lesser) instead of m + n. Nevertheless
many difficulties still remain. For one thing the new method rests
very extensively on contour integration in the complex plane (as is
true also of one method for obtaining the coefficients in the
Weierstrass polynomials). Thus a successful application of this
new method depends on an expeditious method for carrying out these

complex integrations.
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In the sequel we give an account of the present status of the
new theory, together with a simple example to show its relationship
to the Sylvester dialytic method. It should be mentioned, however,
that the Sylvester method is applicable to polynomials only, while

the new method is applicable to analytic functions.

THEOREM 1. Let f(z) and g(z) be analytic in a region R and
let f€z) #0 on OR. Let the equation f(z) = O have n roots

in R, each root being counted a number of times equal to its multi-

1 £'(z)
o éR )~ 42)-

sufficient condition that either two roots of the equation f(z) =0

plicity (so that =n = Then & necessary and

coalesce or that the two equations f(z) =0 and g(z) =0 have

a root in common is that

So Sl 52 e Sn-l

Sl 82 85 .oo Sn

82 S5 Su .o Sn+l =0

8,1 S, 5,1 cen Spp o (1)
where
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'__J

Sl g zkf‘(z)g(z)dz
ko 2mi f{z)

PROOF'; It is known from the theory of analytic functions that

[helni

5= L 2

k 121 ‘4 g(zi)3 k=0,1,2, ... (2)

where 2z,z,, ..., z,  &re the n roots of fﬁz) = 0. It is also
known that, if any pair of these roots coincide, then the so-called

Vandermonde determinant

1 1 1 e 1

Zl zg z5 . e zn

22 22 22 z2

1 5 3 e n
V:

ZJ—l Zn--l Zn-l Zn—l

1 5 3 .o n

must vanish, and conversely. Hence we readily deduce the fact that
if any two of the roots Zyy +eey 2 Of f(z) = 0 coincide or if
at least one of these numbers is also a root of g(z) = 0, then the

determinant
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ez)  elz)  elzs) ... elz)

z,8(z))  z,8(z,) 258(25) ...

8(zy)  258(z,)  2oe(zg) ... 226(z_)
A= : : :

47e()) el B e() .. 2lg(n)

must vanish, and conversely. For, of course A

ve(z, Je(z,). . .8(z ).

Hence, assuming that at least two of the zi's coalesce, or that
at least one of the g(zi)'s is zero, or both, there must exist n

numbers, 7027127 ps vees Yy g s not all zero, such that

n=1 i )
7,208(z,) =0, i=1,2,..., n (3)
j=¢ J 1 1

Multiplying (3) by zi(l =0,1,2,..., n-1) and summing over i, we

obtain

n-1 . n S 4

= 7j; zl zi . g(zi)] =0, £ =0,1,2, ..., n-1 (L)
J=C i=

It now follows from (2) that
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n-1

7.5

'Zo 55540 = 0, L =0,1,2, ..., n-1 (5)
J:

Since the y's are not all zero, we thus immediately obtain (1)
as a necessary condition.

Conversely, if (1) is satisfied there exist n numbers, 7o
Yy» 7ps +++s 7,y not all zero, such that (5) is satisfied, whence

with the help of (2) we find that (4) is also satisfied. But we can

n n-1 g
write (4) in the form z(z 7.z?)z?g(z.) = 0, or better yet in
121 oo ‘3 177
the form
n L
iz B;z.8(z;) =0, £=0,1,2,..., n-1 (6)
where
n-1 .
B;= Z 7.2, 1=1,23 ..., n 7)
J= J 1

Now,if (Case 1) the B's are not all zero, we see from (6) that
the determinant A must vanish, whence at least two of the zi's
must coalesce or at least one of the g(zi)'s must vanish, or both.

On the other hand, if (Case 2) the PB's are all zero, it follows
n-1 :
from (7) that % 7jzg = 0 and since the y's are not all zero
J=0
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it follows that V must vanish, whence at least two of the z's must
coalesce. In either case, we find that (1) is a sufficient condition

as stated in the theorem.

THEOREM 2.  Suppose that the n roots of the equation f(z) = 0
which lie within R, as in the preceding theorem, are distinct and
suppose that just one of these roots also satisfies the eguation
g(z) = 0. Then, using the same notation as in the previous theoremn,

the n homogeneous linear equations,

n-1
% s
J=

T s P ®8)

in the n unknowns 70’71""’yn-l have a solution for which
= 1 and such that the root common to the two equations

Tn-1
f(z) =0 and g(z) =0 is equal to

1 zf'(z)

- f dz + v
2ri 3R f(g) n-2
PROOF: According to the preceding proof we know that there exist n
numbers ¥ _,7. -++»7,_, not all zero such that (3) holds and that
these y's satisfy the equations (5). Since Jjust one of the

g(zi)'s, say g(zn), is equal to zero, we can divide each of the
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first n-1 of equations (3) by g(zi). Thus

n-1
z

£ 7jzi =0, i=1,2,u..,n-1
J:

This means that the (n-1) roots, distinct from z, satisfy the

algebraic equation

Moreover, Tn-1 % O, since otherwise the degree of this equation

would be less than (n-1) while it still would admit (n-1) distinct
roots. Since equations (3) as well as (5) or the equivalent equa-
tions (8), are homogeneous, we may choose yn_lz 1. Hence the sum

of the (n-l) roots distinct from z  is equal to Since

np -

the sum of all n roots of the eguation f(z) = O is known to be

equal to

/ zf'(z) dz

L
3 >
2ri 3R fiz

we find by subtraction that

1 f z2f'(z)

dz + y
SR f(z) n-2
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as we wished to prove.

From Theorem 1 we, of course, have a quantity ©, namely the
determinant of (1), which vanishes whenever f and g have common
zeros in R. Unfortunately, however, it also vanishes under cir-
cumstances when f and g do not have a common zero, namely when-
ever f has multiple zeros. If f(z) and g(z) depend analytically
upon another complex variable ¢ (or upon several such variables),
then & also depends analytically upon £, and it is, then possible,
in general, by way of the theory of removable singularities, to de-
fine a function w(g) which vanishes if, and only if, f and g
have at least one common zero, this common zero being, of course, a
function of ¢{. To show how this comes about we first prove the

following:

LEMMA 1. Let S denote the matrix

s, 5, S, ‘e S, 1

Sl 82 33 oee Sn

82 S3 Su coe e+l

Sn--l Sn Sn+l Tt SEn-E
M —



where

S

k
_1 z g(z)f'(z) -
k_ i gR f(Z) dZ, k = 0,1,2,...

and let M denote the Vandermonde matrix

1 1 1 .es 1

Z Zn z5 .o z

Z2 ZE ZE 2

1 2 5 R Zn
Zn-l Zn—l zn—l zn-l
1 2 3 to n

Then

det S = g(zl)g(zg)...g(zn)[detM]2

(9)

or, in terms of other previously introduced notation, whereby & =

det S and V = det M,
o = g(zl)g(zg)...g(zn)v2 . (10)

PROOF: From the definition of A given in the proof of Theorem 1

we have
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g(z,)g(z,)...g(z )V = & (11)
Hence, it is sufficient to establish the matrix equality
S = (matrix of A)M' (12)

where M' 1is the transpose of the Vandermonde matrix M. For, if

this matrix equation were established we would have

det S =Adet M' =AdetM=pA. 7V (13)
whereas, from (11) we know that

A = glz,)a(z,)...g(z )V,

so that, upon inserting this value of A into (13), we obtain

det S = g(zl)g(z2)...g(zn)V-V

which is equivalent to (9) or (10).

To establish (12) note that the (p + 1)th row of the matrix
. b P p
of A contains the elements zlg(zl), 228(22)""’ zng(zn), whereas

the (q + 1)th column of M', (which is the same at the (q + 1)th

row of M) contains the elements z%, zg, ooy zg . Hence, by the

rule for forming matrix products,the element in the (p + 1)th row
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n
and (g + 1)th column of (matrix of A) M' must be i§1z§_)+q g(z;),

which, by (2), is the same as SP+q , the element in the (p + 1)th
row and (g + 1)th column of S, as we wished to prove.

Having completed the proof of Lemma 1, we now introduce the
hypothesis that f and g depend analytically on ¢ as long as
t Tbelongs to a specified domain D. Then the solution of the equa-
tion f£(z,t) =0 for =z in terms of t is an n-valued function of
{, analytic except possibly for branch points. We assume that all
n branches lie in R as long as ¢ € D. However, any analytic
symmetric function of these n branches, denoted by zl(g),
zg(g), cees zn(g), must be analytic without even branch points, in

its dependence upon ¢ € D. In particular, this is true of the pro-

duct

8(z,(£);6)a(z,(6),8)...&(z (£),¢)

and also of the square of the Vandermonde determinant,
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1 1 1 . 1
z,(8)  z5(¢) 23(5) ces z_(¢)
2 2 2 2
z,(6)7 z,(¢) ZB(E) . z (¢)
vie)y = | . : : :
z ( )n-l 2 ( n-1 2 n-1 . z n-1
(¢ »(¢) 5(¢) ,(6) (1)

If we assume that V(C)2 does not vanish identically in ¢, then
we know from the theory of analytic functions that it vanishes only

at isolated points. The quantities

k
_ 1 Z g(*z,()f'(z,() _

5= 53 éR (2, 6) dz, k = 0,1,2,...

are also clearly analytic functions of ¢ and hence so is & = det S.

It follows, at once, that the function

is also analytic in D except possibly at points where V(t)
vanishes where ¥ is not even defined. But from (10) it is clear

that except at these isolated points where it is not defined
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Y(C) = g(zl(g),C)g(zg(g),C)-.-g(zn(C),C) (15)

Hence (15) can be used to define ¥ also at its isolated singular
points, and the resulting V¥(¢{) is analytic throughout D. More-
over it is obvious from (15) that ¥(t) vanishes if and only if the
value of ¢ is such that one (or more) of the quantities g(zl(g),g),
g(ze(g),g),..., g(Zn(Q);Q) is zero. That is, V¥(t) = 0 if and only

if { takes on a value such that the equations
f(z,¢£) = 0 and g(z,¢) = 0 (16)

have a common solution for z.

It may be added that, instead of using (1L), we can use the

fact that

% % %2 : %n-1

oy o5 o3 . o,
V() % o3 Oy e “n+1

;n—l ;n p+1 92n-2 (17)
where
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k
o Bz [ R 0 1) = 3
This follows from Lemma 1 in the special case g(z,t) = 1.

We summarize these results in the following:
THEOREM 3. Let f(z,f{) and g(z,f) be analytic in z € R and
£ €D and let f for each ¢ € D have n zeros located in R
but suppose that f(z,{) #0 for z e OR and ¢ € D. Assume that
the determinant in formula (17) does not vanish identically in D.
Then there exists a function ¥({) analytic in D which vanishes
at those points { of D (and only at those points) for which the
equations (16) have a common solution. Moreover at points where
v(t) £ 0, ¥(t) = @(g)/v(g)e where & =det S and V(t) is given
by (17).

In applying these results to cases where f and g are poly-
nomials and the region R is a circle of sufficiently large radius
centered at the origin, it is necessary to evaluate integrals of the

form

=

P(z _ 1lim 1l P(z
éRQZ dz—B—)COZTFi C(é)aéz‘%dz

where C(B) represents the circle with radius B and center at the
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origin, and where P and Q are polynomials in z. If the degree
of P 1is not less than the degree of Q, we find by division

algorithm that

P(z) _ B(z)
R ORE. -

where A and B are polynomials and the degree of B is less than

the degree of Q. Since A(z) is analytic we know that

[ A(z)dz =0
c(g)

Hence

1 P(z _lim 1 B(z;

Let Q(z) = qoz“+ qlz“ml + qé*mg P qo% 0, and B(z) = bozuml +

blz““a+b »z"‘l“5 +

5 Faas
-1 -2
. 1 P(z lim 1 P L L
then o L @) % g o o ) & T, - Jaz -
oR c(p) qQ+ Qz +q.z ...
(o) 1 2
. 2r b + b ﬁ"leﬂle +D B_2e-2ie+ ..
lim 1 [0 o 1 2 1d6
B — 00 271 -1 s -2_-216, :

0 q,*t 9B e + o
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and since it is easy to establish'the uniform convergence of the

last written integrand, as B —» oo, to bo/qo, we reach the result

that
b
1 P(z _ _©
i L alz) 7 g (18)

Of course, if the degree of B(z) is less than p-1, we take
bo: 0. But we always have qo% 0 by definition of u as the
degree of Q(z).

We are now in a position to apply Theorems 1, 2, and 3 to the

case where
2 . 2
f(z) =27+ bz +c and g(z)=12+pz +q

and where R 1is any region large enough to contain both roots of
the equation f(z) = 0. 1In applying Theorem 35 we may take p and
q to be constants and also either b or c. The other one may be
taken as { and the region D may be regarded as the entire complex
plane.

We must first calculate So’sl’ and 82 as defined in Theorem

1. For instance,

13k~



S

2 2
1 [ (2z + b)(z7+ pz + q) dz

= - and by the division algorithm
2 ami oR e bz + ¢

we have

22(22 + b)(22+ p + pz +q)

5 - 229+ (-b + 2p)22+ (be-pb + 2g-2c)z +
z + bz + ¢

2
(<b7+ pbo—gb + 3cb-2pc) + KE&’Pb5+ (ke + g)b%+ 3peb + (2c ~2q¢))z * )

z + bz + ¢

where )\ 1s a quantity whose value is irrelevant. Hence, we find

by the method explained above that
5,= b~ pb5 + (~he + q)b2+ 3pcb + (202-2qc) (19)

Similarly we find that

Sl: -b5 + pb2=qb + Jcb-2pe (20)
and that

2
S = b"-pb + 2g-2¢c (21)

(The fact that S1 and So are certain coefficients in the quotient
is not entirely accidental as the reader will soon discover if he

carries out in detail the calculations of S,,8,,8, by use of (18)).
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The quantities ¢ and o, are obtained in the same way, but

0’91’ 2

with far less computation: thus
223+ bz2 2

—=—dz = b -~ 2¢ (22)

1
i oR 22+bz + ¢

2
1 2z + bz
J

C,= —— '—_-—_dZ:—b
1 oR 22+ bz + ¢ (23)
1 2z + b
| 270 4z =2 (2k)

SR 22+ bz + ¢

It now follows from (19)-(24), from the definition of & = det S,

and from (17) that

2

¢ = th+ (~pe-pg Yoo+ (c®-6qc + pc + 0“7+ (hpe+ bpge)b +

(—hc5+ 8c2q—ucq2~4p202

and

V(£)® = o ke

This last expression is, of course, precisely the discriminant of
22+ bz + ¢, as it should be, and, for this reason it was not really

necessary to carry out the calculations indicated in (22)-(2k).
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The essence of Theorem 3 is to the effect that @ is exactly
divisible by V(§)2. This fact is readily verifiable in the pre-
sent example. 1In fact it is found from the above expression for ®

that

® = (b°-4e)(-peb-pab + o+ pPc + q°+ gb°-2qc)

Thus, the quantity ¥ of Theorem 3 turns out, in this example, to

be
¥ = -pcb-pgb + c2+ pec + q2+ Qb2-2qc

This turns out to be exactly the Sylvester eliminant.

1 » aq O
0O 1 p a
¥= 1 b ¢ 0
0 1 b c

In order to illustrate Theorem 2, it is necessary to find the
guantities Y5270 which according to (5) are given in this case

n =2, by the equations

S070+ Slyl =0

S175% o7 = O
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We are interested in the case when these two equations have a
simultaneous non-trivial solution and, in fact, according to Theorem
2 we look for a solution in which 7= 1. Thus we find that

7= «Sl/SO and the formula of Theorem 2 for the root r common

to the two equations f(z) = 0 yields, and g(z) = 0 yields

. S S g.- 8
_ 1 E%;%El _ L _ o1 1
T~ on éR (z dz + 75" % "5 T8
o 0

Hence, using (20), (21) and (23), we get

_ 2pc-be + bg
b2- pb + 2g-2c

r

In view of the fact that we are dealing with the case where VY = o,

i.e.,

qbgu 29c - pgb - pbe + q2+ c2+ pgc =0

we find the following equivalent but simpler expression for r:

Either of these expressions for the common root of the two equations
is, of course, in this example also obtainable by the dialytic
method of Sylvester.
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CHAPTER 19

TIME OPTIMAL CONTROL

SUBJECT TO PHASE COORDINATE CONSTRAINTS

-139-



1. Statement Of The General Problem

Consider the system

x = £(x) + au (1.1)

. where x 1s an n-vector representing the system's state, f(x) is
an n-vector function of x, a is a constant n-vector and u = u(t),
the control parameter, is a scalar function to be more properly des-
cribed below. We assume that f is of class 02 in some region
G containing the origin and that f£(0) = 0. Moreover, we assume
that the origin is an isolated zero of f. The function u is re-
stricted to the class U of all real valued piecewise continuous
functions on the real line whose range is contained in the closed
interval  [-1, 1]. The space of x is denoted by X.

A point X, n G 1s said to be controllable if there exists

a function u € U which steers the system from X, to the origin
in finite time. The set of all controllable points in G is called

the controllable region in X and denoted by R.

. Iest NEX be a given closed set in phase space. The set N

will be called the set of constraints. Consider the set Nl of all

those points x € R for which there exists a control function
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ux(t) € U which steers the point x to the origin without ever
leaving the set N. Clearly Nlc: NCR, for if x € N1 then x
may be steered into the origin, whence x ¢ R, and on the other
hand x cannot be outside N without violating the condition that
X be steered into the origin without leaving N. If X, € Nl then
there exists at least one control function u (t) which steers X
to the origin in finite time without ever leavgng the set N. How-
ever, the function ux (t) is not necessarily unique. In fact,
there may exist infinizely'many distinct control functions each of
which steers X to the origin without ever leaving the set N.
Denote the set of all these control functions by UX (N). Our prob-

e}

lem may now be stated as follows: for a given point X € Nl find

that function (or those functions) in u, (N) which steer the point
X, to the origin in minimum time T = T(iO,N). It may, of course,
happer that this problem, as formulated above, is too severe. It
may not be generally possible to find an optimal control for every
point X in the sst N1° Although every point in Nl is con-

trollable within N, the search for an optimal control may have to

be restricted to a set smaller than Nl'

2. On The Notior Of Controllability.

Let [—'X(o) be the class of all (unconstrained) admissible
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trajectories which connect a fixed point x € R to the origin. We
shall restrict our attention to systems (1.1) which have the properfy
that at most one of the members of rf;(o) éatisfies the maximum
principle {all x € R). 1In other words, we éssume that if there is

a solution satisfying the necessary conditions for optimality em-
bodied in the maximum principle, then this solution is unique.

We shall say that a set KC R is controllable within a set

MCX if for every point x € K +there exists an admissible control
ux(t) which steers x +%o the origin ih finite time without ever
leaving the set M. Using this formulation the set Nl

fined as the maximal subset which is controllable within N. It is

may be de-

easy to see that R is controllable within itself. For if x € R
thern there exists an admissible control which steers x to the origin.
If y 1is any intermediate point on an admissible trajectory which
cornects x to the origin, then y +too is controllable. It follows
that every admissible trajectory is contained in R, whence R is
controllable within itself. Thus, if N = R, the problem of time-
optimal control subject to constraints is identical with the uncon-
strained problem.

Suppose N 1is a proper subset of R. Let X € N, and let

1

U (t) be an admissible control which is time-optimal relative to
o
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the class Ux (N). ILet rﬂ be the trajectory corresponding to
o}

u (t) which connects X, to the origin. It follows from the
)
definition of U_ (N) that [’C€N. 1f [ does not intersect
o
the boundary of N then there is a whole neighborhood of T_7

which lies in the interior of N. Hence T—7 must satisfy the
maximum principle throughout its length. It therefore follows from
our assumption concerning the system (1) that T_T is optimal re-
lative to the whole class U. Thus, if r7 does not intersect the
boundary of N it is identical with the optimal trajectory of the
unconstrained problem. Otherwise, rﬁ is composed of arcs which
lie alternately in the interior of N and on its boundary. Follow-
ing standard notation we shall denote the boundary of N by oN.

Iet N2 be that subset of N. which has the property that

1

every one of its points has an optimal control which steers it to

the origin (within N). In other words, N2 is the set of all those

points X € Nl for wnich there exists a control which is optimal

relative to the class Ux (N). A peoint x € N2 will be said to be
o}

strongly controllable . Clearly N2<:ZN1‘:LN. Examples in which

Nl% N will be given in the next section. However, we have not yet
found an example of a case in which N2 f Nl’ nor have we succeeded

in proving that N2 must equal N As assertion to the effect that

1

-143-



N =N, (under certain reasonable assumptions) would be important
inasmuch as it would establish the existence of a solution to the
problem of time-optimal control with constraints throughout the

set Nl. On the other hand, if N is not necessarily equal to

2

N there would be points in N, which are controllable within

17
N, but are not strongly controllable there (they may be strongly
controllable without constraints). As stated above, this question
is still open.

Before proceeding further with a detailed discussion of results
obtained by us, it seems approbriate to relate the problem at hand
to some rather far reaching theorems in the calculus of variations
which are found in the literature. The most appropriate treatment
for present purposes (especially as regards the first problem) is to
be found in Chapter 6 of "The Mathematical Theory of Optimal Processes"
by Pontryagirn, Boltyansky, Gamkrelidze, and Mischenko (translated by
Trirogoff ).

The problem considered in that chapter is concerned with the

system,

dx

2X _ ey

i = Tlx, u)

where x 1is a point in a closed region B of n-dimensional space and

-1hh-



u is a point in a closed region of r-dimensional space. Given two
points X and Xy in B, one considers the class C of all
functions u(t), whose values lie in U and which are defined on

some interval to =t st such that there exists a solution

l)
x(t) of the above system having X, and Xy as end points and
everywhere contained in B. That is x(to) = X, x(tl) = x,, and,

x(t) € B for each t on the interval tost=st The problem,

1°
then, is to choose out of this class C, a particular u(t), which
minimizes a given integral of the form,

tl o)
{ £ (x(t), u(t))at.

o
The r-vector functions u(t) may assume values on the boundary of
U and the n-vector functions x(t) may assume values on the bound-
ary of B. An arc of such an optimal trajectory which lies entirely
in the interior of B, except for its end points (which may lie on
the boundary of B), must satisfy the Pontryagin maximum rrinciple.
If, however, it lies entirely on the boundary of B it must still
satisfy a modified maximum principle of lower dimensionality, and
there is also a so-called jump condition which must be satisfied at
the juncture of two such arcs of either kind.

For certain kinds of problems of particular importance, the
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maximum principle implies bang-bang control. Evidently, then, the
theory of bang-bang control is going to continue to play an important

role in the constrained problem.

3. Contributions To The General Theory

We return to the system
X = f(x) + au (3.1)

where x 1s an n-vector representing the system's state, f(x) is
an n-vector function of x, a 1is a constant n-vector and u = u(t),
the control parameter, is a scalar function. We assume that f is
of class 02 in some region containing the origin and that f(0) = O.
Moreover, we assume that the origin is an isolated zero of f. The
function u is restricted to the class U of all real valued piece-
wise cortinuous functions on the real line whose range is contained
in the closed interval [-1,1]. System (1) is assumed to be controll-
able in a certain neighborhood of the origin. The space of x is
denoted by X.

Let R be the controllable region in X, namely the set of
all points which can be steered into the origin in finite time., If

x 1s in R +then there exists a control function ux(t) in U
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which steers x into the origin in finite time T(x, ux). The
assumption that there is a neighborhood of the origin which is
controllable says that R contains an open set G which contains

the origin.

THEOREM 1. If R contains an open set G which contains the origin

then R is open.

FROOF: ILet x be an arbitrary point in R. Then there exists a
control function ux(t) which steers x into the origin in finite
time. ILet S(8) denote an open sphere of radius & and center at
the origin. Choose & sufficiently small so that S(8) ¢ G. Since
ux(t) steers x into the origin it must steer it into S(%). Let
® = 9(t,x,u) denote the solution of system (3.1), corresponding to
the control u, which passes through the point x at time t = Q.
Then there exists a time % > 0 such that Q(t*,x,ux) € S(%). Iet
P be the point w(t*,x,ux) and let Sp(g) be the open sphere of
radius % and center p. Given p and & there clearly exists a
neighborhood Nx of x having the property that if Yy 1is any point
in Nx then

”Cp(t,y,ux) - (P(t,x,ux)“ <%
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for al1 O =t = t* . (Here [[p| denotes the norm of p). In

particular, this inequality holds for t = t*, whence
9(t*,y,u ) € 5_(2) C 5(s) < R.
X P'3

Thus the trajectory through y with control ux(t) intersects R
and therefore y € R. Herice NXC: R and R is open. This completes
the proof.
Iet N %be a closed bounded (hence compact) subset of R which
contains the origin. Following § 1 we denote by Nl the subset of
N which consists of all points which are controllable within N.
We are interested in the properties of the set Nl'
PROPOSITION 1. N. is not empty.

1
PROCF': 0 € Nl .
PROPOSITION 2. Nl is the maximal subset of N which is con-

trollable within itself.
PROOF: Let {’Sa} be the collection of all subsets of N each

of which has the property that it is controllable within itself. Iet
S = LJS .
a «

Clearly SCN., If x € S, then x € Scz* for some @¥. Since Sa*
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is controllable within itself, x is controllable within Sa* and
therefore within S. It follows that S is controllable within it-
self. If K is any subset of N which is controllable within it-
self then, by definition of S, KE&S. Hence S is the meximal
subset of N which is controllable within itself. We shall show
that S = Nl'

S is controllable within itself and SCN. Hence, by defini-

tion of N, SCNl. Conversely, let x € N

1 Then there exists

1
a control ux(t) which steers x to the origin in finite time
T(x,ux) within the set N. The arc {m(t,x,ux)l Osts T(x,ux)}
is a subset of N and is clearly controllable within itself. Hence
it is contained in S and, in particular, m(O,x,ux) =x dis in 8.

Therefore, NlC:.S. This completes the proof of Proposition 2.

The set N, may actually reduce to a single point, namely the

1
origin. This happens, for example, in the system klz €, k2= Xy
for the set N consisting of all points lying on the x2—axis between
Xy= -1 and X,= + 1.

We shall assume henceforth that the set N contains an open set
which contains the origin. It is not clear to us at this point

whether this implies that the set Nl has the same property.
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LEMMA 1. TLet © > O be sufficiently small so that S(8)c G. Iet

C be a compact subset of R. Then there exists a time T(C,5) such
that every point in T may be steered into S(8) in time T(C,8)

or less,

PROOF: Let x € C. Then there exists a control ux(t) € U which

steers x into the origin in time T(x,ux). Hence, there exists an

openr neighborhood NX of x such that
o(T(x,u_),y,u_) € 5(2)
T Y x 2

for all y € Nx' The collection of neighborhoods {lex € C} form
an open covering of C from which we may select a finite subcovering

N ,..., in . Pick

T(C,8) = , _ _ T(xi,uxi).

This completes the proof of ILemma 1.

LEMMA 2. For any set F, let F° denote the interior of F.
Suppose there exists an open subset G*¥ of N which contains the
Oorigin and is controllable within itself. Suppose, furthermore, that

X 1s controllable within NO. Then x € N; .
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PROOF: If x is controllable within N° then x € N). Moreover,
there exists a control ux(t) € U which steers x +to the origin in
time T(x,ux) in such a way that @(t,x,ux) e N° forall 0=t s
T(x,ux). et [7= [T(x; O,T(x,ux)) denote the arc of the trajectory
of @(t,x,ux) corresponding to the time interval [O,T(x,ux)]. [
is an arc in the topological sense of this word, hence it is compact.
The boundary oON of the set N is also compact and ON f\I~7 =0.
Hence the distance between r_' and ON is positive, say 17 > O.

Iet G¥C N be the given open neighborhood of the origin which is

controllable within itself. For any fixed positive integer 1r there

exists a neighborhood Nx of x having the property that

“q)(tJY,°uX) - CP(t)X:U-x)“ < ;

for all y e N and &ll Ost s T(x,ux). Choose r large enough
so that S(ﬂ;)C:.G*. Thus w(t,y,ux)lo =t s T(x,ux) is contained
in a tubulai neighborhood of r” which does not intersect oN, and
@(T(x,ux),y,ux) ¢ G¥, Hence y is controllable within N° and
therefore NXC:INl. It follows that x € Ni . This completes the
proof of Lemma 2.

COROLLARY 1. Under the assumption of Lemma 2, if x € BNlIT N,

then any trajectory which steers x to the origin must meet dN.
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PROOF: If x € Nl and there exists & control function which steers
x to the origin without meeting AN, then x is controllable with-

in NO. But then x € Ni, by Lemma 2. This completes the proof.

Lo A Two-Dimensional Example_

Consider the system

le] =1 (4.1)

X, =€, X, 6 =x

1 1’

The controllable region of system (h.l) is the whole plane. Iet N,
the set of constraints, be a disc of radius R with the center at
the origin. Our problem is to find the sets Nl and N2 and to
develop a time-optimal control law for points in Né subject to the
constraints represented by the set N.

We know from the theorem mentioned in § 2 [L. S. Pontryagin,
V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, THE MATHEMATI -
CAL THEORY OF OPTIMAL PROCESSES, p. 311], that any portion of an opti-
mal trajectory lying in the interior of the set N must satisfy the
maximum principle. Hence, such portion of such trajectory will have
to be Bang-Bang.

The switching curve of system (L4.1) is well known from our

previous investigations. Its leaves are given by
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1 2
Rll' X" 5 X 5 X <0
1l 2
R, %+ 3 X s x1.> o] (k.2)

A closed form optimal control law for the unconstrained system was

found in Chapter 13 to be

€ = -sgn[x2+ % (sgn Xl)Xi] (L.3)

1
2 247 . .
et r = (xl + x2)2 . Then *t = (xl/r)(e + xg). Using the

value of € as given in (4.3) we find that # is positive through-
out the shaded region of Figure L.l and negative otherwise. We shall

distinguish among the following cases:

(i) R
(i1) 1<R< V3

A

1

(ii1) Rz 3
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FIGURE L.1

(i) The Case Where R < 1

For points lying. above the switching curve the value of ¢
is -1. For such points the value of ¥ is negative in the first
and fourth quadrants. Therefore any trajectory starting within
the fourth or first quadrant above the switching curve (and, of
course, within the disc N, of radius R) cannot leave N either
in the fourth or first guadrant. Such trajectory must therefore meet

the positive half of the xg-axis at a point whose xg—coordinate
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satisfies 0 < X = R. However, once the trajectory crosses the
xz—axis its distance from the origin begins to increase. There are
two possibilities: the continued trajectory may meet the leaf Rll
before meeting the boundary of N, in which case the complete
trajectory lies in the interior of N and is therefore identical
with the unconstrained case, or it may meet the boundary of N be-
fore meeting Rll'
if there is one, must lie on the boundary of the disc.

Now it is easy to see that an arc of a trajectory of system

(h.l) will lie on a circle with center at the origin if and only if

€ = -X,. Since R =1 and lle < R for every point on the bound-
ary of N, +the control € = X5 is admissible. Since it is unique,
it is also optimal. Once the curve R is reached, either in the

11

interior of N or on its boundary, control is switched to € = +1

and the system is steered into the origin on R We conclude,

11
therefore, that for any point P in N, 1lying above the switching
curve (of the unconstrained problem), there exists a unique control
which steers it time-optimally to the origin within the set N.

The situation below the switching curve is completely analogous,

except that the value assigned to € in the interior of N is re-

versed. However, the value assigned to € on the boundary of N

_]_55_

In the latter case, part of the optimal trajectory,



remains the same, namely, € = ~Xye

Thus, the case when R £ 1, provides us with an example in
which N = Nl= N2. It is for that reason that a complete solution
to the problem is possible: every point in N is controllable
within N and moreover, every point within N has a (unique) opti-
mal control within N.

Examples of optimally controlled trajectories within N are

given in Figure 4.2

A

FIGURE k4,2
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We now proceed to develop a closed-form time-optimal control
law subject to the constraint embodied in the set N(R = 1).

Let € be as in (4.3). We shall write e€* for the optimal
control law of the constrained system. We shall show that one

. form of such control is given by

c*

-

(1 + sgn[R-r])e + %(I-Sgn[R~r])(l-sgn x, )({1 + € sgn[R-r]} {-x,}

+ {1-¢ sgn[R-r]}e) + %(1-sgn[R-r] Y1 + sgn xl)({l-e sgn[R-r]} (x5}

+

{1 + € sgn[R-rl}e)
(4. 4)

We first remark that ¥ requires slight overshoots beyond the
circle of radius R. This, however, does not create any difficulty.
If it were necessary to keep strictly within the disc N, one would
simply replace R in (4.4) by a quantity R which is slightly
smaller than R. This would assure control strictly within N.

‘ The function €* is given in terms of three summands. The
first of these vanishes outside the circle of radius R, whereas the

last two vanish in its interior. Thus, in the interior of N we have,

€* = %(l + sgn[R-r])e = ¢
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as required.

On the boundary of N, or rather, slightly beyond the boundary
of N, the first term vanished. We note that the second summand
vanishes for Xy > 0 while the third one vanishes for Xy < 0. If
Xy < 0 an optimal trajectory could reach the boundary of the disc
only in the second quadrant above the switching curve (Figure L4.2).
Along such a trajectory € = -1. Once the system exits the circle
of radius R, the value of (R-r) Dbecomes negative and the value of
€¥ becomes “Xye The system would now proceed along an arc of a
circle with center at the origin in the counterclockwise direction.
As long as the moving point lies above Rl the value of € remains

1

-1, and the term
(1-¢ sgnl[R-r])e,

which appears in the second summand, vanishes. However, once the sys-
tem, moving as it does on its circular arc, crosses the switching
curve, the value of € changes to + 1. At this juncture the co-
efficient (1 + € sgn[R-r]} venishes whereas {1l-¢ sgn[R-r]} = 2.
Thus, the value of e€* is now switched to the value of €, which

is + 1. In other words, once the system reaches the switching curve,
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control is switched €¥ = +1 and the system is steered into the
origin along Rll’
Similar considerations are oObtained in the case when the system

reaches the boundary of N in the region x, > 0, except that in

1
this case the second summand vanishes and it is the third one which

furnishes effective control.

(i) The Case When 1 <R <V3

Reference is made to Figure 4.3. Consider trajectories starting

FIGURE 4.3

within N, above the switching curve, in the first or fourth
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quadrant. Such trajectories (for which € = -1) cannot leave the
circle through the arc AB since ¥ is decreasing there. ILet GHC
be the arc of the trajectory, with € = -1, which passes through

C. Then any trajectory, with € = -1, which starts in the region
CHGBC must meet the boundary of N on the arc BC. Such trajectory,
if it were to be controllable within N, would have to proceed along

the arc BC, which would require setting € = -x However, x, > 1

2" 2
on BC and therefore such control is not admissible. It follows
that there exists no optimal control for points in the shaded region
which would keep the controlled trajectory within N. The shaded
region must therefore lie outside the set N2.

In fact, it is not difficult to see that the reéion CHGBC
actually lies outside the set N,. TFor let ¢ = u(t) be any admiss-
ible control, with u(t) > -1. If Pl and I—’2 are two trajec-

tories emanating from the same initial point P in CHGBC and

satisfying, respectively

X, = -1, X, = Xy
and
kl— u(t), kgz Xy [u(t)] = 1



then clearly f—; lies to the right of f—a . The trajectory f—;
would therefore be forced to the boundary of N somewhere between

G and C. Since x is increasing along rv , the system would

2
then have to proceed counterclockwise along an arc of the circle
leading to the point C. This, however, is inadmissible. Hence no
point in CHGBC is controllable within N even if the condition of
optimality is dropped.

Every trajectory emanating in the region OAGHCO, with € = -1,
will reach the xg—axis between O and C and will proceed thence
to the third quadrant. In the region CDLC the value of
T z(xl/r)(e + xg) is negative for € = -1. Hence all trajectories,
with € = -1, emanating from or crossing through this region, cannot
reach the boundary of the circle along the arc CD. When continued

forward in time they may either intersect R at some point between

11
E and O without ever reaching the boundary of the circle, or they
may intersect the circular arc ED before reaching Rll' In the
first case the value of € is switched to + 1 and the system pro-
ceeds to the origin without ever reaching the boundary of N. In

the latter case € is set equal to -x Since the arc ED 1lies

o

below the line X,= 1, such control is admissible. When the point
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E is reached control is switched to + 1. Thus, every point in the
region OQAGHCDEFO is optimally controllable within N. The situa-
tion below the switching curve is completely symmetric (Figure L4.3).

Here, then, is a case in which N % Nl but Nl= N2.

(iii) The Case When R z V3

Reference is made to Figure L4.4. Let ABC be an arc of the
trajectory, with € = -1, which passes through C. The reader will
easily convince himself that the set Nl vhich is controllable with-
in N consists of the unshaded part of the disc. Moreover, Nl= Né

so that control within Ni is optimal. The difference between cases

(i1) and (iii) is that in the latter case no trajectories emanating

from the interior of Nl can ever reach the boundary of N, whereas

in the former case trajectories emanating from the interior of Nl
could reach the boundary along the arcs DE and KA. In case (iii)

€ need never be set equal to -x, whereas in case (ii) € must be

2

set equal to -x, along the aforementioned arcs. 1In case (iii) we

2

still have N £ N, N, =N,
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FIGURE L.L

5. The Subdivisions of N

Let us consider a closed (n-1)-dimensional manifold ON topo-
logically equivalent to a sphere. We suppose that oN is the
boundary of an n-dimensional region N which contains the origin as
an interior point. In accordance with a previously explained termino-
logy, we shall say that the region N is controllable within itself,
if, for every point X € N U dN, there can be found at least one
continuous or piecewise continuous scalar function u(t), whose

absolute value does not exceed unity, such that the trajectory of the
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systenm
ax/dt = Ax + au(t) (5.1)

for which x(0) = x, must pass through the origin for some finite
t =t >0 without ever leaving N UdN for any t between O
and to. Here, as usual, we mean x and a to represent n-vectors,
while A dis an n X n constant matrix.
We shall suppose that ON is (at least) piecewise represent-

able by equations of the form,
f(x) = 0, (5.2)

where f 1is of class (' and is negative for points in N near
N and positive for points outside of N U AN near aN. We now
contemplate four sets of points 51’52’85’SA located on ON and
defined as follows:

S, consists of those points on ON which "move" outward
(that is, away from N) under (5.1) when u(t) = + 1, and which

moves inward under (5.1) when wu(t) = -1. That is, the points of

S1 are points of egress under X = Ax + a and points of ingress

under X = Ax-a, according to a well-known terminology. Analytically,

this means that for points in Sl

-164-



sgn[ (0f/ox)(Ax + a)) = +1 (5.3)

S, consists of those points on ON which move inward under (5.1)
when u(t) = + 1 and which move outward under (5.1) when u(t) = -1.
That is, the points of 52 are points of ingress under X = Ax + a
and points of egress under X = Ax-a. Analytically this means that

for points in 82
sgn[ (3f/dx)(Ax + a)] = 71 (5.4)

S3 consists of those points on ON which move inward under
(5.1) when u(t) = + 1. That is, the points of s3 are points of

ingress under both %X = Ax +a and X = Ax-a, which means, analyti-

cally, that for points in S5

(3f/3x)(Ax + a) <0 (5.5)

SLL consists of those points on oN which move outward under
(5.1) when u(t) = + 1. That is, the points of 8, are points of
egress under both %X = Ax * a and % = Ax-a, which means, analyti-

cally, that for points in S4

(of/ox)(Ax + a) >0 (5.6)
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Evidently 8§, U s, U 85 u SAC oN and Siﬂ Sj is empty when-

ever i#3 (i,j =1,2,3,4). We shall suppose also that
ON -[SlU s, U 85U Sh]

may be represented as a finite number of cells of dimensionality

< n-l.
THEOREM 1. If N is controllable within itself, SJ1L is empty.

PROOF: Let X, € SL]. and suppose it is possible to join X, with
the origin by a trajectory of (5.1) which never leaves N U and

for which |u(t)] = 1. Then, with x(0) = x_, we evidently have

(af/éx)(AxO+ au(0)) s 0 (5.7)

for some u(0) with absolute value less than unity. For evidently
(5.7) can not hold for any u(0) = + 1, because of (5.6). Subtract-
ing the left member of (5.6) (with x = xo) from the left member of

(5.7) we also obtain

(of/ax)alu(0) 5 1] <0 (5.8)

Since sgn[u(0)rl]l=%1 and since (5.8) holds for both determinations of

the ambiguous sign, we find from the upper sign that (af/éx)a >0
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and from the lower sign that (df/dx)a < 0, when x = x_ . The

theorem follows at once from this palpable contradiction.

THEOREM 2. No trajectory of (5.1) initially within N can reach
a point of S3 without first leaving N.

The proof of this theorem is entirely similar to the proof of
Theorem 1. It may be formulated as follows:

Suppose there were a point X € S5 through which passes &
trajectory of (5.1) at t = t, >0, i.e., x(to) = x_. Now, if
x(t) e N UdN for all positive t = t_, as would have to be the

case for some u(t) if the theorem were false, we would have at

(3f/3x)(Ax_+ au(t_)) = 0 (5.9)

since f 1is negative within N, =zero on ON, and positive without
N. It is obvious that ]u(to)] <1, since otherwise (5.5) would be
contradicted by (5.9) at X, € 85 . From (5.5) and (5.9) we also

obtain by subtraction

(af/ax)a[u(to) 1] >0 (5.10)

Since sgn[u(to) 7 1) =31 and since (5.10) holds for both choices
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of the ambiguous sign, we find from the upper sign that (df/x)a < 0
and from the lower sign that (df/x)a >0 at x = x,. The theorem
follows at once from this contradiction.

As a result of Theorems 1 and 2, we can virtually dismiss from

further attention the behavior of trajectories on S5 or Sh'

THEOREM 3. If a trajectory x(t) of (5.1) lies on N throughout

a time interval to <t<+t then

l)

u(t) = -(3f/x )Ax/[ (3f/x )al (5.11)

Secondly such a piece of some trajectory, with ]u] s 1, passes

through every interior point of S, or 8, and, thirdly, (3f/dx)a

2

can not vanish on Sl or Sg.

PROOF: Since x(t) lies on ON throughout the interval to<t<t,
we must have flx(t)] = 0. Differentiating this identity with re-
spect to t and replacing dx/dt by the right hand member of (5.1)

we obtain
(of/ox)[Ax + au(t)] = 0 (5.12)

from which we obtain (5.11) immediately, at least, if (df/dx)a # 0.

The second assertion of the theorem follows from (5.3) in the case
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of an interior point x of §,, or from (5.4) in the case of an
interior point of §,. In either case, the scalar L(u) =
(f/3x)[Ax + au], considered as a (linear) function of the scalar
variable u, changes sign on the interval -1 s u = + 1. Hence,
it must vanish at some intermediate value of u.

The fact that (3f/dx)a # O anywhere on §, or S, follows
from the fact that the linear function L(u) £ constant, (otherwise
it could not change sign as noted above). Therefore, the coefficient

of u in L(u) is not zero. This coefficient is, of course, pre-

cisely (of/dx)a.
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FIGURE 5.1

In this figure (representing a three-dimensional problem) the
only part of the boundary shown is the set Sl!} 82 represented by

the annulus. The leaf Rl 1 of the switching curve Rl’
2

sented by OMK, OM being interior to N while NK:C:SQ. The leaf
-170-
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In this figure (representing a three-dimensional problem) the
only part of the boundary shown is the set Sll} 82 represented by

the annulus. The leaf Rl 1 of the switching curve Rl’ "is repre-
2

sented by OMK, OM being interior to N while NKZCZSQ. The leaf
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R2 1 of the switching surface R2 consists of those half-trajectories
b

"pointing at" R, ; @along its whole length OMK . R
2

Sl along the curve LK and coincides with Sl "above" this curve

intersects
2,1 :

LK. R1 5 1s represented by OLJ. R2 5 is not shbwn, so as not to
3 2
clutter up the figure too much. But the boundary of R2 o contains
b4
CLJ, and R2 o intersects 82 along a curve JM and coincides
3

with 82 above JM. See the text for comments on points Pl’PE’Ql’

Q2 € 82 and PB’PM’QB’QM € Sl‘

6. The Case When N = Nl= N2

In the sequel we suppose not only that the region N is controll-
able within itself but that it is strongly controllable within itself
in the sense of time optimality. This means that among all the ad-
missible controls yielding a trajectory defined and contained in
NUN on some interval O =t = to which connects a given point
X with the origin (x(0) = X X(to) = 0), there is always at least
one for which ‘to is a minimum.

The problem of finding time optimal trajectories is then greatly
simplified by a known theorem (referred to in more detail in § 2 of
the present chapter) according to which time optimal trajectories

must consist (at least, in the present instance, if certain conditions
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of generality relative to the composition of AN are satisfied)
of a finite number of arcs of the following three types.

Type 1. Solutions of the system X = Ax + a which lie interior to N.

]

Type 2. Solutions of the system X = Ax-a which lie interior to N.

It

Type 3. Solutions of the system x Ax—a[(af/ax)Ax][(Bf/ax)a]-l

which lie in the set Sllj Sg.
Any continuous trajectory consisting of a finite number of arcs
of these three types which leads from an initial point x.€ N U oN
to the origin will here be called a bang-bang (constrained) trajec-
tory. The theorem referred to above does not say that bang-bang
trajectories are always time optimal but rather that any time optimal
trajectory leading from X, to the origin must be bang-bang. This
means that in the search for time optimal trajectories we may limit
ourselves to the class of bang-bang trajectories. For this reason
the study of bang-bang trajectories is likely to prove fruitful.
Just as in the unconstrained problem, we define switching mani-
folds of various dimensiocnalities as the loci of the end points of
such arcs of all possible bang-bang trajectories. The parts of switch-
ing manifolds involving end points of arcs of Type 3 must lie completely
on oN and indeed must furthermore lie in Sl[J 82 in accordance

with Theorem 3 of Section 5. The other parts of the switching manifolds
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would appear to be somewhat the same as in the unconstrained problem.
At least the switching manifolds may theoretically be found by moving
backward from the origin just as in the unconstrained problem.

Thus the one-dimensional switching manifold R1 consists of

two leaves R and R the first of which (i.e., R

1,1 1,2° 1,1)

always contains the connected part of the half-trajectory of the
system % = Ax +a for t s O which lies within N and which is

at the origin when t = 03 but Rl 1 also in general contains arcs
J

of Type 3 lying in §, (see Figure 5.1, drawn for n = 3), the

whole of Rl 1 being a continuous curve joining the origin with a
J

boundary point X of S2.

Next the leaf R2 1 of the two-dimensional switching manifold
)

R2 always contains the connected parts of all the half trajectories

of the equation X = Ax-a for t < O which lie within N and which

are on Rl 1 when t = 03 but R2 1 also in general contains arcs
2 2

of Type 3 lying on Sl, the whole of R2 1 being a continuous sur-
2

face whose boundary includes Rl , and a curve on the boundary of
51

§,. DNotice that, if Pe (R N N), then Pe S so that P
2

1’ Y

is a point of egress for the system X = Ax-a. Thus the half trajec-
tory t £ 0, whichat t =0, is at P, yields points interior to
N when -t idis small., as required by the above description.
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Proceeding by induction, the leaf Rk 1 of the k-dimensional
)

switching manifold Rk(l < k = n-1) always contains the connected
parts of all the half-trajectories of the system X% = Ax—(—l)ka for

t £ 0 which lie within N and which are on Rk 1.1 when t = O;
L

but Rk 1 also in general contains arcs of Type 3 lying in
3

Slf5 ( l)k]’ the whole of R being a continuous k-surface whose
2{3-(-

k,1

boundary includes R and a (k-1)-dimensional manifold lying on

k-1,1
the boundary of SL[5 ( l)k]. Notice that, if P e (R N ),
1(3-(-

k-1,1
then Pe 5 k., 8o that P is a point of egress for the
2[3-(-1)7]

system % = Ax-(-l)ka. Thus the half trajectory t < 0 yields
points interior to N when -t is small, as required by the above
description.

After obtaining the leaf Rn of the switching manifold of

-1,1

highest dimensionality Rn the connected parts of all the half

..l"

trajectories of the system X = Ax—(-l)na for t £ 0 which lie with-

in N and which are on R when t = 0 make up an n-dimensional

n-1,1
region T1<= N whose points can be steered along a bang-bang trajec-
using -(-1)%

tory into the origin via R R

n-1,1’ n—2,l’°°"Rl,l

as the initial value of u, the other values of u being thence-
forward uniquely defined. They are, as a matter of fact, either + 1
or -1 except at certain points on dN where they are determined by

(5.11) or Section 5.
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By repeating the above discussion with the modification that

Rl,l’ R2,1’ Rk,l’ Sl,Sg,a are to be replaced respectively by R1,2’

R SQ’S -8 we obtain the other leaves of the switch-

By oreees By o 1’

ing manifolds, as well as an n-dimensional region Tgc::ﬁ whose
points can be steered along z bang-bang trajectory via Rn 1.0
]

Rn-2,2"’°’ Rl,E using (-1)" as the initial value of u, and
with the other values of u uniquely determined as before.

There are also certain points, initially on oN, which do not
begin with u = + 1, but rather with the value of u given by
(5.11) of Section 5. This is because such points are already on a
part of a switching manifold which lies on oN. Examples of such
points are indicated in Figure (5.1) by Pl’PE’PB’ ,+ On the other
hand the initial value to be taken at Ql or Q2 would be u = + 1,
while at Q5 or Q21L the initial value of u would be -1.

Evidently there is much lack of rigor in the above discussion.

For one thing, although we might conceivably claim that N =
Ellj Ee since N is assumed to be strongly controllable, it would
probably be more difficult to prove that Tl and T, have no common

2

oint, If T and T were to have a non-vacuous intersection, we
p l 2 3

would have a set of points for which bang-bang control is not unique

and this would make it more difficult to decide which control is opti-

mal.
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For another thing, it is not entirely clear, for example, why
one should terminate Rl,l at a boundary point K of 82 (see
Figure 5.1). It is possible that in some problems it might have to
be continued into Sl even though, if this were done, the leaf

R2 1 would be very peculiar. It would look rather like two leaves
J

Joined at the point K and with u = + 1 instead of -1 on the
part near R beyond K.
1,1
The situation becomes even more complex when we try to discuss
the natural boundaries of the leaves of higher dimensionality.

In attempting to illustrate the above theory, we considered the

system kl = u(t), ie =X, 33 = X5, subject to the constraint

xi + xg + x§ < 10 as well as, of course, |u| = 1. That is, we

3
attempted to take N = (xI Z x? < rg). It was found, however, that
i=1 %

such an N 1s not controllable within itself, no matter how small
the positive number r may be choseny; for it was found that the set
Sh is never vacuous if N is chosen in this way. In order to get
a set controllable within itself part of the sphere xi + xg +

2 < r2 must be discarded. Such an example is discussed in the

following chapter.
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CHAPTER 20

A THREE DIMENSIONAL EXAMPLE OF RBANG-BANG CONTROL,

WITH PHASE COORDINATE CONSTRAINTS
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A Three Dimensional Example Of Bang-Bang Control With Constraints

We consider the system X, =, X5 = Xq5 x3 = X5, subject to

[u| = 1 along with the two further constraints 3xl+ x§+ x§ -1 =0
and —3x1+ xg + x§ -1 £ 0. It will be somewhat more convenient,
however, to use x,y,z in place of XE’XB’xl’ respectively. The
system is therefore written in the form %2 =u, X =2, ¥ = x and
the constraint conditions are |u| s 1, 3z + x2+ y2 -1 £ 0 and

-3z + x2 + y2 -1 £ 0, The last two conditions mean that the motion-

is required to take place within, or on the boundary of, the three-

dimensional region N bounded by the two paraboloids of revolution

n

z = (%)(l-—x2 —yg) and z —(%)(l-x2 —y2). The part of the boundary,
for which 2z > 0, 1lies on the first of these paraboloids and will be
referred to as the "upper cap. The part of the boundary, for which
z < 0, lies on the second paraboloid, and will be referred to as
the "lower cap.! The only other boundary points of the solid are the
points of the unit circle x2+ y2 =1 in the plane =z = O.

The upper cap is, in this example, identical with the set Sl’
defined in Section 5 of Chapter 19 while the lower cap is the set
S2 (also defined there). That is, every point of the upper cap is
a point of egress for the system 2z =+ 1, X =12, ¥y =x, and is a

point of ingress for the system z2 = - 1, X = z, ¥ = x. The reverse
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is true of the lower cap.

To prove these assertions we merely note that

%36 [3z + 4 y2 -1] = 3u + 2xz + 2yx (1)

which on the upper cap mey also be written in the form,
g_t‘[Bz +x° 4 y2 ~1] = 3u + (g)X(l-Xg‘yg) + 2xy (2)

Since the maximum absolute value on the cap of each of the quanti-
ties (luxg—yg), x and y, is 1, it is seen at once that the
sign of g%[Bz + x5+ y2 -1] when |u| =1 is the same as the
sign of u. Similar considerations apply to the lower cap.

More generally one might consider the paraboloids +cz + x2 +
y2 = ae . We took & =1, ¢ =3, in order to have a simple example
of a case in which the upper cap is Sl and the lower cap is 52.
This would not be the case, when c¢ is sufficiently small compared
with ea. For instance, wvhen & =1 and c¢ =1, the point x = -Aﬁzg s
y = %, Z = %, is on the upper cap and yet is a point of ingress for
the system 2 = +1, X =12, § = x, instead of being a point of
egress as 1t should be if the entire upper cap contained only points
of Sl°

Returning to the case ¢ =3, a = 1, (to which we hereafter
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confine attention), it may be mentioned immediately that the region
N, as specified, is not controllable within itself., In fact, the
points (0, + 1,0) can not be moved by taking |u| = 1, without

2+ yg—l] =

leaving the region. For we find from (1) that %E[Bz + x
3u, if x =0, y=+1. and z =0, Hence, if we are to remain

on or below the paraboloid of the upper cap we must take u 0.

iIA

On the other hand we have gEH_BZ + x2+ ye-l] = -3u, 1if x = O,
y=*1, 2z =0, sothat, if we are to remain on or above the para-
boloid of the lower cap, we must take u z 0. Hence the only possible
way to stay within N or on ON is to take u = Q. But for this
value of u the point in question is an equilibrium point. It will
appear in the sequel that many other points of N and its boundary
must be discarded if we are to be left with a region controllable
within itself. We shall describe how such a discard may be made so
that the remaining region will be controllable within itself using
only bang-bang trajectories in the generalized sense defined in
Section 6 of the preceding chapter. The arcs of these bang-bang
trajectories are of three types, namely:

IYPE 1. Solutions of 2 =+1, X =2, ¥y = z.

TYPE 2, Solutions of %2 = -1, X = 2, ¥ = X.

TYPE 3&. Solutions of % = ~(§)X(y +z), x=12, ¥ = x.
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TYPE 3b. Solutions of 2z = + (%)x(y +2), x=2,¥ =x.

Arcs of Types 1 and 2 are allowed only interior to N al-
though their end points may lie on the boundary of N. Arcs of
Type 3a occur only on the upper cap, while arcs of Type 3b occur only
on the lower cap. Bang-bang trajectories are made up of a finite
number of arcs of these three types exclusively.

Arcs of Type 3a may be adequately discussed by considering
their orthogonal projections on the plane 2z = 0. These latter

curves satisfy the differential equations

x = (5)(1="7)
¥y o=x (3)

Similarly the arcs of Type 3b are projected onto the plane

z = 0 and these projected curves satisfy the differential equations,
. 1 2 2,

k= -G)a-x"y")

¥y o=x (4)

It is easy, by direct inspection of the differential equations,
to discuss the phase portraits of (3) and (4). Thus the trajec-
tories of (3) cross the y-axis with zero slopess they cross the unit
circle with infinite slopes (except at the singular points x = O,

y =+ 1); within the unit circle they have positive slopes to the
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right of the y-axis, and they have negative slopes to the left of
the y-axis. The situation is reversed outside the unit circle, but
it is only the interior of the unit circle with which we are pri-
marily concerned. If, for the moment, we do consider points outside

as well as inside the unit circle, we may note the fact that the

N

singular point (0,-1) is a saddle point and the point (0, + 1)
is a center. This leads to a situation illustrated in Figure 1.
Similarly the trajectories on the lower cap are projected onto the

curves on the plane z = O illustrated in Figure 2.

(o,+1)

(0, - ')

FIGURE 1. (upper cap) FIGURE 2. (lower cap)
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Actually systems (3) and (L) admit simple exponential integrating
factors, namely e(2/3)y and e-(%/g)y, respectively, so that we
readily find explicit equations for the curves in Figure 1. They
are of the form

6(8/5)y[x2 + y2 - 3y + g] = const. (5)

The corresporiding equations for the curves in Figure 2 have the

form,
e-(a/z)y[x2+ yz + 3y + %] = const. (6)

Not all of the curves on Figures 1 and 2 have equal importance.

In our discussion of the more important of these curves, we shall

FIGURE 3. (upper cap) FIGURE 4. (lower cap)
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need to clutter up the figures with other markings. We therefore
refer to Figures 3 and 4, where only the two arcs BA and FS in
Figure 3 satisfy the differential equations (3) or the integrated
equation (5), and where only the two arcs DC and EM in Figure 4
satisfy the differential equations (4) or the integrated eguations
(6).

The point § in Figure 3 is determined in such a manner that
it is the projection on the plane 2z = 0 of the point P where the
trajectory of Type 2 passing through the origin intersects the upper
cap. The coordinates of P may be found by solving a certain alge-
braic equation and in fact are found to be approximately x = -.0552,
y = +.0061, =z = +.3323., Thus the point S on the xy-plane is
(-.0552, y = +.0061). Using these values, the constant on the right
hand side of equation (5), was found to be approximately 3.4990 for
the curve FS. After this, we may solve a simple transcendental
equation to find the coordinates of F(-.5597, +.8287).

Similarly the point M in Figure 4 is the projection on the
plane 2z = O of the point where the trajectory of Type 1 passing
through the origin intersects the lower cap. It turns out that M
has the coordinates +.0552 and -.0061, and the curve EM

cuts the unit circle at the point E(+.5597 , -.8287).
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The curve BA in Figure 3 is the trajectory of Type 3a
which approaches the saddle point A(0,-1) of the system (3). The
constant on the right hand side of equation (5) corresponding to
BA is therefore (%i)e-g/3 and it is then possible to find the
coordinates of B (-.7231 + .6906) by solving an appropriate
transcendental equation.

The curve DC in Figure 4 is the trajectory of Type 3b which
approaches the saddle point C(0, + 1) of the system (4). Pro-
ceeding as before it is possible to find the coordinates of
D( +.7231, -.6906).

From this description and from the material in Section 6 of
te preceding chapter, it is evident that the leaf R1,2 of the one-
dimensional switching manifold consists of the curve on the upper
cap corresponding to the curve FS of Figure 3 along with an arc
of Type 2 connecting with the origin. The leaf Rl,l consists of
the curve on the lower cap corresponding to the curve EM of Figure
4 along with an arc of Type 1 connecting with the origin.

The leaf Re,l of the two-dimensional switching manifold con-

sists of all trajectories leading into R of a certain kind.

1,1

These trajectories, just before their junctions with R will

1,1’

run along arcs of Type 23 but, if these arcs are followed backward,
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it will be found that they intersect the upper cap along a certain
curve whose projection onto the plane 2z = O is the curve of Figure
3, EVS. Part of EVS, namely VS, represents the intersections

of the upper cap with those arcs of Type 2 which join onto Rl 1
b4

at interior points of N. The other part of EVS, namely EV,
represents the intersection of ithe upper cap with those arcs of

Type 2 which join onto R at boundary points of N. As mentioned

1,1

above the part of R on the boundary of N 1is represented by

1,1
the curve EM in Figure 4. The curve EV in Figure 3 thus repre-
sents a curve on the upper cap whose points are carried along arcs
of Type 2 to points on a curve on the lower cap represented by the
curve EM in Figure 4. But R2,1 consists not only of the arcs
of Type 2, just mentioned, but also the arcs of Type 3a which fill
out an area on the upper cap, whose projection, on the plane
z = 0, 1s the shaded region AEVSFRBA in Figure 3.

The leaf R2)2 of the two-dimensional switching manifold con-

sists of all trajectories leading into R1 5 of a certain kind.
J

These trajectories, just before their junctions with R will run

1,2
along arcs of Type 13 but, if these arcs are followed backward, it
will be found that they intersect the lower cap along a certain

curve whose projection onto the plane z = 0 is the curve FEM
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of Figure 4. Part of F XL M, namely ZIM, represents the intersection
of the lower cap with those arcs of Type 1 which join onto Rlﬁ2 at
interior points of N. The other part of F X M, namely FX, re-
presents the intersection of the lower cap with those arcs of Type

1 which join onto R, 5 at boundary points of N. As previously in-

Ls

dicated, the part of R ori the boundary of N 1is represented

1.2
by the curve FS 1in Figure 3. The curve FZ in Figure 4 thus
represents a curve on the lower cap whose points are carried along
arcs of Type 1 to points on a curve on the upper cap represented by
the curve FS 1in Figure 3. But Rg,2 consists not only of the

arcs of Type 1, just mentioned, but also the arcs of Type 3b which
fill out an area on the lower cap whose projection, on the plane

z = 0, is the shaded region EDCFZIME in Figure L.

To complete our description of Figures 3 and 4, it remains to
define the curve DC in Figure 3 as the orthogonal projection on z = O
of the curve of intersection of the upper cap with the arcs of Type
2 leading into the points on the lower cap represented by the curve
DC in Pigure L. Similarly the curve BA in Figure 4 is the ortho-
gonal projection on 2z = 0 of the curve of intersection of the lower
cap with the arcs of Type 1 leading into the poirts on the upper cap

represented by the curve BA in Figure 3. Moreover, the points on
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the upper cap represented by shading with lines of negative slope

in Figure 3 are carried along arcs of Type 2 into the points of the
lower cap represented by shading with lines of negative slope in
Figure L, except for some which reach points of Rg’2 interior to

N Ybefore reaching the boundary of N. Similarly, the points on

the lower cap represented by shading with lines of positive slope in
Figure L4 are carried along arcs of Type 1 into the points of the upper
cap represented by shading with lines of positive slope in Figure 3,

except for some which reach points of R2 before reaching the

,1
boundary of N.

We are now in a position to isolate & subset N, of N which

1
is controllable within itself by bang-bang control. Namely N is

1
bounded above bythe part of the upper cap whose projection on the
xy-plane is the shaded region in Figure 3; it is bounded below by
the part of the lower cap represented by the shaded region in Figure
by it is bounded laterally on the left by arcs of Type 1 leading
from the curve BA on the lower cap (whose orthogonal projection
is represented in Figure 4) to the curve BA on the upper cap
(whose orthogonal projection is represented in Figure 3); and,
finally, it is bounded laterally on the right by arcs of Type 2

leading from the curve D C on the upper cap to the curve DC on
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the lower cap. We must exclude from Nl the points on these lateral
boundaries as well as the cruves BA and DC on both the upper

and lower caps. For our bang-bang control sends all such points
asymptotically into one or the other of the singular points A and

C. Other points in N-N are probably completely uncontrollable,

1
although this has not been proved.
We now give a preliminary description of how bang-bang control

is effected within Nl.

If the point is initially on the part of the upper cap repre-
sented by shading with lines of negative slope in Figure 3 or if it
is initially slightly below this region, the point is carried along

an arc of Type 2 until it meets R If the meeting with R

2,2 2,2

occurs on the boundary, that is, onthe part of the lower cap repre-
sented by similar shading in Figure 4, the system is switched to an
arc of Type 3b until it meets the curve represented by F £ M, at

which instant it is switched to an arc of Type 1. If, however, the

first meeting with R occurs at an interior point of N. the

2,2 1
switch to an arc of Type 1 is effected immediately. In either case

the point i1s conveyed along this arc of Type 1 until it meets Rl 5
, L]

This meeting may occur either on the upper cap on the curve represented

-189-



in Figure 3 by FS or at an interior point of R In the former

1,2°
case the switch to the arc FS of Type 3a is made and then a last
switch to an arc of Type 2 is made. In the latter case the switch

to the arc of Type 2 is made immediately.

If the point is initially on the part of the upper cap represented
by shading with lines of positive slope in Figure 3, the point is
carried along an arc of Type 3a, until it meets the curve represented
by EVS in Figure 3, at which instant it switches to an arc of Type

2 until it meets R and then is carried into the origin in an

1,1’
obvious way.

If the point is initially just below this region, it must of
course, be carried first along an arc of Type 1 until it reaches this
region, and then its subsequent motion is the same as that discussed
in the preceding paragraph.

The above discussion applies to all points starting on t he upper
cap in Nl or just below the upper cap. The discussion for points

starting on or just above the lower cap is carried out in an analogous

way and is left to the reader.
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For points starting deep in the interior of N one must of

l)
course, always start with an arc of Type 1 or 2 depending on which
"side" of the two-dimensional switching manifold the initial point
may happen to be on. This will be made more clear in the sequel,
It may be seen that it is possible and useful to apply & topo-
logical transformation to Nl in such a manner that it appears as
2

the right circular cylinder g2 +0° =1, [t] <1 in ¢, 7, t-space.
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See Figure 5, which has been drawn and lettered in such a manner
that all lettered points in Figure 5 are the topological images of
the points on the upper or lower caps whose projections on the plane
z = 0 are similarly letered in Figures 3 and 4. The topological
transformation is further chosen so that the upper cap ncwgappears
as the left side of the cylindrical surface, and the laterial
boundaries previously referred to now appear as the two bases of the
cylinder. The leaves of the switching manifplds are represented in

Figure 5 as follows:

1,18 EMO, i.e., points (t,n,f) such that §2+ n2= 1, t =0,
£20, n>0, or such that £ =0, { =0, and 0< 7 < 1.
R, ,; FSO, i.e, points (E,n,¢) such that £+ n°= 1, ¢ = 0,
£<0, n<O0 orsuchthat € =0, { =0 and 0> n 2z -1.
R, .¢ All points (&,n,f) for which either ¢ = 0, g2+ n2 <1,
£ >0 or for which <0, (<0, and §2+ n2 = 1.
R, ,¢ All points (&,n,f) for which either ¢ = 0, g2+ n2 <1,
£ <0 or for which >0, £ >0, and §2+ n2 = 1l..

If the topological transformation which satisfies the above

requirements could be given explicitly, it would not be difficult to
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give an explicit representation of the switching function. For
there are essentially six possibilities for the position of the
initial point and with each of these possibilities there is a
unique choice for the Type of initial arc. These various possi-

bilities and corresponding types are indicated as followss

1. Interigr to cylinder and above Emn-plane. Type 2.
2. Interior to cylinder and below En-plane. Type 1.
5. On upper right cylindrical surface., Type 3b.

4, On lower right cylindrical surface. Type 1.

5. On upper left cylindrical surface. Type 2.

6. On lower left cylindrical surface. Type 3a.

Finally, it may be mentioned that the shaded part of the
boundary of Nl’ may also be represented as an annulus as in
Figure 5.1 of Chapter 19. However, the behavior along the curves

where the two caps have common boundaries (i.e., the two halves of

the annulus) is somewhat different from that indicated in that figure

of Chapter 19.
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APPENDIX TO PART A

PARAMETRIC EQUATIONS OF THE THREE-DIMENSIONAIL SWITCHING
MANTFOLD FOR THE FOURTH ORDER LINEAR SYSTEM WITH

EIGENVALUES (0, O, -\, A)

By

Peter S. Ying

(1)



Parametic Equations Of The Three-Dimensional Switching Manifold For

The Fourth Order Linear System With Eigenvalues (0, 0, -\, \)

As we mentioned in Chapter 17, the computation of the three-

dimensional switching manifold R of the fourth order linear

3,1

system with eigenvalues (0,0,-A,)) involves the use of the trans-

formation
SA
Y Ay
1 1
z,= -1l-e [(y2+ l)e -2]
1
o, .y (1)
23: + l-e [(yB"l)e + 2]
2
Zh— -(y)-i»+ yl)
We substitute into
A 2 2
22z3+ 2225+ 22 <0
AZ
l
e ( 2 5 2 3)/22
Ry 14 (2)
(25_22+ zgz3 + hzez3 0
Zu+ = log (LL.Q) = O
\ X 2

(1)



and let

o
Il
o

]
"

Yo+ 1

Then (2) becomes

265w + (8t + 269 " + (¢Pn-126-8)u” + (-hen + 26 + 1y )u?

+ (& + 41-5)u-293 > 0

2
2eu + (En-3)u-2q o .
e(gu2 - 2u + 1)

efend + (4en-ue + 8)u + (£20°- 1oen-11)u®

+ (hn-héng + 8)u + (lm2 +4q) =0

(iii)

(3)

(4a)

(4b)

(he)



2
2 2tu 5+ (gn-B)u—En _ logzu (4d)
2(tu’-2u” + u)

€ = log

The previous method for the computation of RB,l was to eliminate
u between equations (4c) and (4d). On account of the extreme diffi-
culty of this elimination, it seemed wise to investigate the possi-
bility of bypassing this elimination with the purpose of developing an
adequate description of this switching manifold, leading perhaps to
satisfactory approximations.

Equation (4c) is a quartic equation in u, but, from the defini-
tion of u in equations (3) only positive roots are to be accepted.
Also, since the real logarithmic function is defined only for positive

values of the independent variables, we see that §¢,n, and u also

must satisfy

1+ L&n ; Lu-2(n *+ 1) o o (5)
2(tu”-2u + 1)

Obviously, if we can solve equation (kc) for u and substitute

into equation (Ld), we shall obtain a relation between €E,m and £,
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which will define a surface in (g,7,t) - space. This surface does

not intersect the plane n = 0 at points where £ < 0 or where

£ > 1.
To prove the underlined statement we set 7 =0 in (Lc),

thus obtaining
2 3 2
P(u) = (ME™- beJu” + (bt + 8" - 1lu +8 =0 (6)

or u = 0. This last possibility is excluded by (3). Since the

discriminant of equation (6) is

1

= g (178" - 51688 + 57967 - 2839¢ + sK0],
16¢"(¢-1)

A

it can be shown that A > 0 except when ¢ 1lies on the closed in-
terval between the two real zeros of A which are approximately

+ 0.7hOT4L and-+ 0.749984. We recall that when A < 0, equation

(6) has three real roots; while, if A > 0, it has only one real

root. Suppose now that & <0 or £ > 1. Then the coefficient of

W in (6) must be positive. Hence f(-00) = -co0 while £(0) =8 >o0.

Hence (6) has a negative real root, and this is the only real root
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since A > 0 for the values of ¢ under consideration. Hence,
if =0 and £<O0 or ¢>1, the equation (Lc) has no posi-
tive real root. This completes the proof of the underlined
statement.

When n =0 and O < t <1, the coefficient of u5 is
negative. Hence f(+ @) = - and f£(0) = 8 > 0. Hence equation

(6) has at least one positive root if ¢ is between O and 1.

It, of course, has three positive.roots if

LTHOTLL < & < . T7L99BL,

We carried out a machine calculation of the roots of equation
(4c) and the values of { given by equation (4d) for all even
integral values of ¢ and n from -20 to + 20 and more de-
tailed calculations in the region -2 = £ s +2 and -2 s 7 s + 2,
From these calculations it was conjectured that there are no points

on the surface with ¢ < 0 for arbitrary values of e



PART B

SIMULATION AND COMPUTATION

by

J. Schlesinger
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mov.
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Simulation Of The Third-Order System

(a) The system described by

€, € =+1,

be represented in phase space by the coordinates (%, %, x).

system moves according to the equations (derived by integration)

et + ¥(0)
% et? + %(0)t + %(0)
% et” + %':t(o)t2 + x(0)t + x(0)

Given a point in phase space, the problem is to find the time-
imal path to the origin % = X = x = 0. This should be accom-

shed by moving a certain time t then switching € to -e,

l)

ing a second time +t then switching back to € again, and

2,

ing a third time t5 to O. The question is to determine the

switching times {tl’tz’tB}' This can be done using the control

fun

g =

02-

— ;..
x+35%

ction (see equation (12A) in Chapter 13)

-(sen 05)o§ - 02, where

2

o

sgn[x + % sgn X

X + %% sgn[x + %



By setting € dinitially to sgn(c), the plant moves along
until it intersects the first switching surface, at which point
0 = 0. € is then switched. The system now moves along a second
path until o is again O, when € is again switched. The point
now moves into the origin monotonically, and one needs merely note
the time at which it actually passes through O.

The control law was simulated on an IBM 1620 computer as
Tollows:

A point (%, X, x) is given, and € is computed for the in-
itial value. Then t is incremented from O until ¢ changes
sign. It is assumed that the point has just passed through the
switching surface. We record t, +then set it back to 0, switch
€, and proceed along the new path until o again switches sign.
Recording the second t, switching e, setting t back to 0, we
follow the last curve until we observe that |(%, %, x)| has begun
to increase, at which point we assume the point is at its closest
to the origin.

In order to test the program, we had to determine check points
for which the optimal paths were known. A program to accomplish

this involved starting at the origin and marching backwards, switching,
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marching backward again, switching again, and finally backtracking
until we arrived at a point lying (arbitrarily) on the unit sphere.
Since the system is symmetric through the origin, we computed only
points whose initial € wag + 1, for their negatives have the
same times with starting € = - 1. We computed some two hundred
points, all lying in the same "hemisphere."

The accuracy of the control law simulation depended, of course,
on the size of the t-increments.

Because of the "steepness" of the first switching surface, a
relatively small overshoot of tl resulted in missing the second
and third by a rather large amount. When the first t is good,

the others are good also.
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(b) The third order system

whose eigenvalue A = 0, *+ 1, 1is a generalization of the system

which was described in Section I(a). We concerned ourselves with

the new case \ = + 1. After transforming to the space (xl’x2’x3)’

the system is

X = +
x2 x2 €

and the solution is

xl= €t + Cl
t
x2— Cee - €
-t
=€"C .
% 3¢

By means of the control function o:
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€ = SEH(U)J

where o = -(1 + cl)F(02,05) + (l'cl)G(GQ’cﬁ)

3
Fleprts) = ([E5(1 + £5)-£50° + b0 (65(1 + £,)%-2 + 14 2(-,)%)

2
2

2 2 .2
G(ge)gj) = {["§3(l - §2) + ge] + h§2§5}'{-§3(l—§2) —§2 —§2+ 2@2]
2 = By(x),%5,%5,0, )
03 = hj(xl,xe,XB’cl

= -sgn h2(xl,x2,el)

Q
-
|

e Myt )

he(xl)xz)n)

By (x),%p,m) = n + enxl(x5- n)

€ = sgn(-xl)

The initial point (xlO’XZO’FBO) is steered into the origin in the
optimal time. This is accomplished by determining the initial value
of € = sgn(c), and following along the trajectory passing through
(XlO’x2O’x30) until o switches sign (having just passed through
0). We then switch €, set t back to 0, set new initial condi-

tions and progress along the new trajectory until o again switches

-201-



sign. We repeat this process until the point reaches the origin.

In actuality, the error accumulated from overshooting the
switching surfaces prevents us from reaching exactly the origin.

In fact, although we should always be able to get to the origin
from anywhere in the space in two switchings, we allow the possi-
bility of more switchings if they tend to drive the point closer
to the origin. We stop when the chatter caused by proximity to
the origin is greater than the distance involved, causing the point
to circle the origin endlessly in a limit cycle.

When this system was simulated on an IBM 1620 computer, it was
first necessary to produce test points whose optimal times to the
origin was known. This we accomplished, in the same manner as in
I(a) by moving backwards from the origin, three specified times,
arriving finally at our initial point. The control law is only

valid for the set

When the control law was simulated, we found that although we
allowed more than two switchings, it was always the case that the
point was closer to the origin after two switchings than three or
four. We have therefore reproduced only the data for the first two
switchings.
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Time Time

ot Point Actual Computed

Distance

.05 -.30,-.21,-.52 .3, .3, .3 .3, +35,.35 .05
.05 .18, .13, .32 .27,.36,.27 .30,.50,.40 .09
.05 <39, 33, 47 .52,.24,.15 .55,.35,.20 .03

.05 -05,-.02, .16 .00,.25,.30 .05,.35,.35 .05
.02 -.30,-.21,-.52 .3, .3, .3 .30,.32,.33 .02
.01 -.18,-.13,-.32  .27,.36,.27 .27,.38,.29 .01

--1  -.05, .02,-.16 .00,.25,.30 .01,.27,.31 .01

It will be seen that the smallest distance to the origin after

two switches is of the same order of magnitude as the t-increment.
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(c) Consider the third order system with one zero and two

equal, but opposite in sign, real eigenvalues

.o - sz - e + w(t)

where ]e] =1 and w(t) is an external disturbance. The system

may be represented in vector form as

¥ = Ay +a(e+w) (1)
or
0 1 ¥y 0
=0 © Yo *+ 0] (e +w)
0 X2 1

In (1) the state variables have a physical significance: x = ¥y
X = Yy, and ¥ = Vs Equation (1) may be written in a much simpler
mathematical form, however, the state variables lose their physical

significance. With the transformation

X =Qy

where @ is such that
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equation (1) becomes

% = Ax +a(e +w) (2)
In (2),
0 0 o0 1

A =10 A 0 and a = |1

O 0O -\ 1

It should be noted thet the region of controllabllity for the
system with a disturbhing force is different from that of the sys-
tem with no disturbances. 1In Section I(b) the region of controll-
ability of the undisturbed system is the set ]x2| < % . Now con-

sider the system with external disturbances
X = Ax +a(e +w)

Further, suppose |w(t)| =M on O =+t = +t., where t. is the

1’ 1

time taken to reach the origin and M < 1 of course. Now the region
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of controllability is given by the set

1-M
lxel <5

Methods of Simulation

Three methods of simulating system (2) are presented. The
first considers using the control law derived in I(b) where w(t) = O.
The second is a method of calculating the optimum switching time in
the face of some external disturbance. Results are presented in a
later section for these two cases. The final method presents an
iterative scheme of calculating the initial condition of the adjoint

vector in the face of some known external disturbance.

(i) First Method

If a state vector in space is considered and it is desired to
move that vector to some desired position by use of the control lew
developed in I(b) in the face of some external disturbance, it can
be assumed that the time will not be the optimum time of the no dis-
turbance case. The effect of the disturbance on the system trajectory
will very from a decrease in time to travel to the origin to an in-
crease as compared to the no disturbance case elapsed time. The rea-
son for this is that as soon as there is a disturbance in the system,
a new system is being dealt with and the control law no longer applies.
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The time may well be shorter than for the no disturbance optimum
case, but it is not optimal for the new case. From the practical
point of view, however, since it is unlikely that all disturbances
will ever be accurately predicted it is desirable to know how the
control law will behave in the face of disturbances.

It was decided to test the control law by simulating constant

force disturbances, up to a magnitude of + 25 percent of € in

equation (2) with A = 1. The results of this simulation are shown
in Figures 7,8,9. The magnitude of the disturbance applied is
scaled on the abscissa, both positive and negative, with the center
the no disturbance case. The ordinate is scaled in time for the
vector to reach the origin, with all times normalized to the no dis-

turbance optimum time.

(ii) Second Method

The second method is strictly a brute force method of calculat-
ing the switching times of the system with the external disturbance

present. The solution of (2) is given by

x(t) = eAtx(O) + At ft e-ASa(e + w)ds (3)
0
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Since we are interested in the control € = + 1 which steers x(t)
from x(0) to the origin in mimimum time and the control function

is unique, then any € = + 1, which steers x(t) to the origin, is
the optimum control function. With this in mind (3) may be rewritten

as

t
x(t) = f T e™%a(e + w(s))as (1)

where tf is the time where x(t) = O. Further, the optimal unique
function is €(t) = + 1 and there is at most 2 switches in the sign

of € as x(t) is steered from x(0) to the origin. Thus (k)

becomes

t t t
I 1 e_ASads =/ 2 e'Asads + f T e_Asads]
0] 1

-x(0) = U[

t
+ [ T ePSau(s)as (5)

where U is the initial sign of e(t) and where t, and t, are
the first and second switching times respectively. Thus, if tl’tz’

and tf, the initial value of €, and the disturbing function w(t)

are known, then the problem is solved.
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In order to write (5) in detail, one must evaluate At from

the series

2

Al 4 ap 4 a2 Ll
Thus

1 0 0]
e—As - 0 e-XS 0

0 0 eM®
and

1
€Asa= e M8

eXs

Written out in full, equation (5) becomes

t t t t
-xl(O) = UlJ s - f 2 3s + f Tas] + / £ w(s)ds
0 t t 0]
1 2
t t t t;
- 2(O) = UlJ lewMgs f 2e s + f fe'xsds] + f fw(s)e-xsds
0 tl t2 0
t t t t
-XB(O) =U[f TeMgs - f CeMas + f fe)‘sds] + [ fw(s)e)”sds
0 t t 0

1 2 ®)
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The problem of solving this set of equations for the times tl,

tg,tf becomes intolerable unless some suitable constraint is put on
the sorts of disturbances one expects to encounter. The solution is
simple for a constant disturbance w(t) = C but this is an un-

realistic assumption. A much stronger solution would result from

allowing w(t) to be of the form

w(t) = b-ce "

which is shown in figure 1.

7z
FIGURE 1

But this wind makes equation (6) impossible to solve by any algebraic

methods. Hence the compromise assumption is made, namely,

-210-



w(t) = E-ce :
wi

b-c

= 1 R

FIGURE 2

Where d is known in advance we have

-x_(0) = - Srem8d_
xl( ) U[2t1 2t,* tf] +bd + a(e 1) + bt .- bd

At
= - g[Ee 1

I
el
\V]
—
(@]
~—
|

At
g[2e l-l

)
uf?
—
(@]
~
]

-1

-2e

-2

At

e

2

-\t
2,

At
+ e T
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-zt

-t
e f]

- %(e

At
]+ e Ta) -

f

1)+ K_E_g(e(-x-a)d_l)

A -



c, -ad
2%, - 2+ tf(l + bu) + U[a(e -1) + xl(O)] =0

At At At
2e T-2e 24e T(1+tu) - UMb+ —S—(e{ BNy, (0)]-1 =0
X +a 2
At At At
ze T -2e 246 T(1+bU)+ U[-b - —< a(e("‘a)d-l) +%5(0)]-1 = 0

(9)

or
2t, - 2t + ft, + R =0
-\t -\t -\t
2e 1 - 2e 2 + fe £ + R2 =0
At At At
2e T -2 2 4pe O+ Ry =0 (10)
where
R, = U[S(e™®® 1) + x,(0)]
1 a 1
R, = -AU[b + =< (e("“a)d -1) + x.(0)]-1
2 A+ e 2
= A[-b - 5 (e("'&)d - 1) +x.(0)]-1
Rs » - & *3
f=1+01U

This set of equations may be solved easily.
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1
t.= t, + 2(ftf + Rl)

2 1
-\t x[-tl- %(ftf + Rl)] -xtB
2e -2e + fe +R, =0 (11)
Aty Alt+ S(fb, + R)] Mg
2e - 2e + fe + R3 = 0 (12)
From (12) we get
Aty rto -21- x(ftf + Rl)
e = (fe T +R)/2(e -1)
1t
By substituting this expression for e into equation (11) and

incrementing tf from 4 (since it is known that tf is no smaller
than d), one need only observe the value of tf at which equation

(11) changes sign. If at this point the coordinates

are satisfied, then it is guaranteed that tl,tg,tf are the optimal

switching times.
This control scheme was simulated on an IBM 1620 Computer with

results reproduced later. There are two difficulties involved in

choosing the initial conditions for a test: choosing the correct
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initial value U of €, and choosing & d which is not unrealisti-
cally small but which is nevertheless smaller than a readonable pre-
diction for tf. If D is the distance from the point x(0) to

the origin, then the fastest time in which a point on the D sphere
could possibly reach the origin is about % D - its path being of
course, the switching curve through the origin. Hence it is safe to
assign d any value less than % D. The matter of choosing the
correct initial € is more difficult and more serious. An equation
for the switching surface ¢ described in I(b) will give the initial

value, but use of this device seems self-defeating. ILacking that,

the choice is arbitrary.

(iii) Third Method

An Tterative Scheme for Calculating the Control Function

Rather than calculate the switching surfaces for a system, or
calculate the switching times, one might consider a method of solving
for the initial condition of the adjoint vector to the system. The
following is an example of the latter procedure.

It is well known that the time optimel control function e(t)

for the system
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x = Ax + ae, |e| s1

is given by

e(t) = sgn[n(t)-a]

where n(t) is the solution of the adjoint system
n=-Am

with n(O) =My - The solution of this adjoint system is

At
n(t) =e 1

Thus the optimal control function is given by

-Ata]

e(t) = sgn[no-e

The time optimal problem is solved is the initial condition of the
adjoint vector n(O) = 1, is known. The following method is an
iterative scheme to determine the value of o for a given X,
The method is due to Neustadt.* The method will be described first

for an autonomous system without external disturbances and then

* Neustadt, L.W., Synthesizing Time Optimal Controls. Journal of
Mathematical Analysis and Applications, vol. 1, no. 3, December 1960.
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extended to the nonautonomous system with deterministic wind disturb-

ances.

I. Consider the first case, that is, the system governed by
X =Ax +ae, |e|] s1 (13)

Consider the set of attainability C(t) which is the set of initial
conditions X, from which the origin can be reached in time t with
control e(t). Neustadt proves that C(t) is closed, convex, and
nonempty. If the system is normel, then the boundary of C(t), dC(t),
contains no straight line segments. The system is said to be normal
if the function qo'e-Ata has a countable number of zeros, that is
€(t) is defined almost everywhere. Further, if x, 1lies on oc(t),

then an extremal control

At

e(t) = sgn[qo-e_ al, (14)

is required to reach the origin, where yR is the exterior normal
to C(t) at X, . c(t)Dc(t') if t>t' and C(t) grows con-
tinuously with +t.

The solution of (13) using the optimum control function (14) is

given by

-216-



x(t) = eAtxo+ ANt fte’As a sgn[no'e-Asa]ds (15)
0
Iet t %be the minimum time to reach the origin. Then (15) becomes
-X_ = ft e o sgn[no-e-Asa]ds (16)
0

Define

t -A -A
Z(t:ﬂo) = [ a Sgn[no-e ® alds
0

Surely for any & € C(t) and ¢ # z(t,no), no-z(t,no) > k-
Also

t -As -As t -As
ng-z(t,n,) = é N, & senln re” alds = é ]no-e alds >0

Thus no-z(t,no) is & monotone increasing function of t for fixed
Ng* Figure 3 shows the geometrical relation of the vector z and

N, for the correct value of n_. Note that for HnoH = 1, the line

°p = Mk <og=n.z(t,n ) for eny ¢ e C(t) and ¢t # z(t,n ).
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' ] ] \\ ;;Kl

FIGURE 3

Now form the scalar function
£(tym,x ) = n <[z(t,n ) +x 1 = [P -eP®alas + q_-x (17)
1Ny %X Mo 2Ty o) 0 ) o™ %o

which is continuous in t,no, and X, and, for fixed T and X
is a strictly monotone increasing function of t.
Since Ny is the unknown that we are going to find through an

iterative scheme, an initial value of R is chosen such that

nél).xo - f(O,nél) , x,) < 0.

A common choice for ngl) is
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Ugl) _ %5

X
o}

If C(t) was a hypersphere then this initial guess at n_ would in-
deed be the correct value. With this initial choice ngl) s let

t increase until f(t,nél) s xo) = O and denote this value of %
by t(l) . The geometrical picture of the above statement is shown
in Figure k. If z(t(l) , ngl)) # -Xx_ ‘then the choice ngl) was
incorrect. A series of corrections to the N vector is necessary
in order to converge to the correct velue. Neustadt suggests the
steepest descent method.

Y w
X4

)

Y

o
Y

c")

v

FIGURE 4
The correction in qél) should lie along the "error vector"

v(t(l)) where
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)

v(t(l)) = ~X_- z(t(l), un

Thus the corrected value of nél) » called

né2) = ngl) [k x + 2(+(1), nél)] (18)

A new f(t,né2), xo) is formed and a t(g) is calculated. Again,
if z((z), nég)) # X, then the procedure is continued. The cycle

is repeated until z(t<l), qél)) is within a small distance & of

=X .
o}

The value of k in (18) will affect the rate of convergence of

n(l) to the correct velue. Paiewansky* used this procedure on the
o

second order system,

“e

X + 0.1x = €(t),

and states that increasing k decreases the number of iterations re-

quired to reach the optimum Mo Further increase in k results in

* Paiewansky, Bernard H., "The Synthesis of Optimum Controllers” pre-
sented at the Optimum System Synthesis Conference, September 1962.
The work was sponsored partly by the Wright-Patterson Air Force Base,
Aeronautical Systems Division, Contract Number AF 33(677)-7781.
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large and undesirable oscillations about the correct value.

In this procedure, we must solve the equation
f(t,qo,xo) = 0.
This defines a new function

t = T(WO:XO)-

(1)

| Neustadt shows the correction vector to Mg 2 namely,

-[xo+ z(t(l), n‘()l))] is indeed proportional to grad. T, that is

[XO + Z(t:no)]
-At
al

Ing-e

As a trivial example of this method, consider the system

X = €
or
Xl = 22

' 5’:2 =€ (19)

The solution of (19) is given by
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xl(t;] 1t xl(O) 1t 4 |1-8

xz(t) 0 1 x2(0) 0 1/ 0 |0

Equation (16) becomes

——xl(O).| -5
= ft sgn[n,(0) - sn,(0)lds
—x2(OZJ 0| 1 2 1

Consider x = (-1,0) then

ngl) = ﬁ;in'= (é)

Forming f(t,qgl), Xo) from (17), one has that

: 2
1 t
(e, x ) -

Setting f(t,ngl), xo) = 0 yilelds t(l) =2

Now using (18) to calculate a new i

n§2> = nél) - k[x - 2(¢(1), ngl)] = (%)
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where k 1is chosen as 1
J?

f(t,nga), x )= 1;— - t, t(g) = 2,

(o}

Forming z(t(e), ngg)) one sees that

z(t(z), nge)) = =X .

Thus ngg) is the correct value. The optimum control function is

given by

qu)(o) 1 -t{|o

e(t) = sgn = sgn[1-t]

nég)(O) ‘ 0 1|1

-’

II. Consider the second case, that is, the nonautonomous normal

systems with external disturbances,
X =A(t)x +a(t)e + w(t) (20)

where w(t) is & known vector function. For our problem, A(t)
and a(t) will be constants although this more general system is

presented for completeness. The solution of (20) is given by
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x(t) = 0(t)x_+ I8 o(t)e (s )als)e(s)as + [T o(t)o™ (s (s as
t t

o) o) (21)

where ®(t) is the fundamental solution matrix satisfying the equa-

tion
o(t) = A(t)o(t), o(t,) = I

of course, x = x(to).
The time optimal regulator problem consists in choosing an
e(t) on t st sT such that x(T) is zero for minimum T. With

this in mind, (21) may be written as
%o = [7 07 (s (s )as = [T 07 H(a)a(s)e(s )as.
t t

o v )

Let

t -1
w(t) = X~ { ¢ ~(s)w(s)ds
"o

Recall that the optimum allowable control function is of the form

€(t) = sgnln -7 (t)a(t)]

The regulator problem now consists in choosing an N such that
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& <I>'l(s)a(s)ssn[ﬂoq’-l(s)a(s)]ds = (t)
t
o

for minimum T.

Let C(t) be the set of all points fT Q"l(s)a(s)e(s)ds,
t

o}
which can be reached from the origin using all allowable controls

in time +t. As before, C(t) is & closed convex set. As in the

constant coefficient case, let

2(t,n,) = {“ o™ (s )a(s)senln -0 (= )a(s)]as ...
o]

Since z(t,qo) is an extremsl response, it lies on oC(t) and o
is the exterior normal to c(t) at z(t,no). As in the previous

case, we define a new scalar function

f(tyno)w) = ﬂo°[z(t;no) - w(t>]

Choose nél) such that ngl) -w(to) > 0, & common choice being

w(t )
-5
o}

Now

f(to,nél), ®) = ~n§l)=w(to) <0
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Let t increase from t_  wntil f(t,ngl),w) = 0 and denote this

(1)

value by t As in the constant coefficient case choose a new

n, @s follows
ae) =l ) <l s e ™) <o), (1))

This iteration process is continued until nél+l)= ﬂgl) . This final

nél) is the correct value. Figure (5) illustrates the geometrical
picture of the above statements.
X1
we) X W
o0 0
¥w)
o
X
f wi)
et
FIGURE 5

(iv) Comparison of Methods

The control laws were tested under various sorts of disturbances.

First, the switching surface control, in which the switching surfaces
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for no disturbance were computed in advance and used to determine
switching points, was employed to drive points into the origin
against small constant constraints., Next the method of computing
switching times directly was used. With this method the optimal
times for the wind-blown system were found. These times are com-
pared, in a series of graphs below, with the non-optimal times for
the same plants under the same disturbances,

Finally, the time-computing method was used to study the be-
havior of the plants under variable constraint conditions. In all
cases, as stated above it is required that the disturbance became
constant before the plant reaches the origin.

The formula for the kind of disturbances in the second method

-at

h-ce™ ", tsd<t,
w(t) =1y , t>4d

This typical wind is shown in Figure 6.
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OPTIMAL CONTROL UNDER

CONSTRAINTS — METHOD 2

Nt a b c | Time | Distance
" 1(-.30, -.21, -.52)| 6.0 | .0 0 .9 . 0001
" " " .05 1.8 | 1.1 . 0058
" " " .15 | " | 1.05 | .00k9
" (.30, .02, -.16)} " 0 0 .9 .0001
" " " .1 0 .95 | .0068
" (=05, .02, -,16)| " 0 0 .55 | .0016
" " 10.0 | .05 |.6 .60 | .0064
" " "ol-.05 | " .60 | .0038
" " " .15 | " .60 | .008)
: " B O T .60 | .0003
" " 25 | " .60 | .0097
" n "ol-es | "] .65 | .0090
" (-39, -.33, -.u7)] " 0 .90 | .0016
" " 5.0 15 j. .75 | .0011
(.18, .13, .32)|10.0 01|.0 .90 | .0019
" " 5.0 15 {.8 | 1.05 | .0037
" " 6.0 |-.15 |.8 | 1.20 | .0llk
" " "l .25 | " | 1.0 | .o007
" " "l .15] 0] .90 .0080
! " " =150} .95 | .0061
" " " 0.8 1.1 | .o0079
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FIGURE 6

Several things are noteworthy about this method. First of all,
although the running procedure is essentially the same as that of
method 1 — hunting for a change of sign in a polynomial (see
"Gilchrist Control Law" Fortran program in Appendix) — the second
method gives much greater accuracy with respect to the time incre-
ment. The final distance to the origin is less than one tenth the
distance found in the other procedure, and the times found are ten
to forty percent more accurate. Such a gain in accuracy, however,
is more than offset by the unfeasible necessity of knowing the wind
velocity in advance. Thus, while method 2 has many theoretical
advantages, its information prerequisites meke it somewhat impractical.

A comparison of the computed times to the origin by methods 1

and 2 follows. In method 1 no allowance was made for the wind, which
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merely disturbed the normal path to the origin. In method 2, the
optimal paths were computed with the wind disturbance taken into
account., The times have been normalized with respect to the
(known) optimel times. Refining the t-increment would have the
double effect of smoothing both curves, and moving the two points

on the t-axis closed to the correct position D = 0; t = 1.

The following data was obtained from various values of a,b,c,

d being set arbitrarily to 3/&; and X\, as, throughout, equal

to + 1.
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The simulation using method 1 indicates that the control law
1s workable in the face of disturbances which, in effect, cause the
state vector to move according to a non-optimal control law. A
rough estimate from Figures 7,8, and 9 show that the greatest in-
crease in time is approximately 4O percent, although it must be
admitted that part of this increase may be due to inaccuracies in
the simulation (too large a time incremént). It is difficult to
estimate whether this increase in time would be good, bad or in-
different in a practical system. A general indication of its
practicality can be obtained by referring to figures 7,8, and 9
which also illustrate simulation carried out by assuming advance
knowledge of the disturbances and adjusting the control law accord-
ingly.

Appendix contains the two FORTRAN programs used to execute these
two tests, method 1 (CONTROL LAW III WITH STEP NOISE) and method 2

(GILCHRIST CONTROL LAW).
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Synthesizing Performance Under Disturbances

The system

can be controlled optimally by a number of different schematiza-
tions of the same control law. Some of these methods involve dis-
covering expressions for the switching surfaces, precomputing the
switching times, or treating the switching time equations themselves
as formulas for the switching surfaces. The first two methods were
described extensively in the previous sections I(b) and I(c). The
last method, though less highly developed than the others, has some
merit and is described below.

The solution to the (transformed) system, which is affected by

some external disturbance w
X = Ax + b(e + w) (22)

is given by

x(t) = ftx(0) + M éte_Asb(e + w)ds (23)

-2%36-



Since it is desired to reach the origin in time t,

-x(0) = ft e-ASb(e + w)ds,

0
where
0 0 0
A =10 A 0
0 0 -
1
b = 1
1
1 0 0
e7hs 0o e o
0 0 s , éand
1
eBsy o [AS
AS
e
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x(t) = 0.

(24)

Hence



The three equations comprising equation (24) become
t
-x.(0) = [~ (e + w)ds
1 0

t, -As
~x,(0) = é (e (e + w)as

_ [t s
0

(e + w)ds (25)

i
ol
—
(@
~—
[

Let us make two assumptions: first, that the point x(0) is on the

lowest order switching surface¥*, S second, that the disturbance

l’
w(t) is a constant w. Then exactly one switching at time t2 will
be required to reach the origin.

Let U designate the initial value of €. Since we assume that

x(0) is on a switching surface 8, €=-U on 5.

)
¥
=
—
O
~
]

»U[Zte— t5] + wt5
A, -t -2t
Ulze %-e 2-1] - % (e °-1)

!
>
\V]
—
(@]
~
1

%
_U[2e Cee --1] +-¥ (e 2-1).

1
ol
—
(@]
~
[

* By lowest order switching surface we understand the surface at
which one switches for the first time — assuming that the initial
point x(0) was not on a switching surface. Subsequent surfaces
are high-order.
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Assume » = 1.
Let R,= -le(o)
R,= U(xg(O) +w) -1

Ry~ —U(xB(O) w) -1

G=1+TUw
Then
2ty Gigh Ry = O a
oo 2 _ Ge~t3 +Ry =0 o
2et2-Get3+R3=O c
From (26b)
cre—J63 e 2, R

2
-t t

ts -
e ” = G/(2e + R

From (26c)

-23%9-
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2 o
2e T -G2/(2e “ + R,) + Ry =0

t -t

2 2 2
LL+2R2e -G +2R3e +R2R3=O
2t t
2 2 2
2R,e +e “(4-G" + R2R3) + 233 =0
2 2
e © = (-B-B-LAC)/2A (27)
Where A = 2R2
B—h-G2+R
= 233
C = 235
t t
e” = (2 ° + Ry )/G (28)

The assumed condition, that x(0) be on a switching surface, is
true if equation (26a) is satisfied for these values tE’tB' The

function

F(x) = 2t,- Gt + R, (29)

must therefore be zero if x(0) is on a switching surface. The

converse condition -x(0) on 8, if F is 0O will also hold if,

in addition, the inequalities

t. 2 t. 20 (30)
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hold. Thus we have

F(x) =0 and t, zt, 2z )<=> is on 8

3 2 1

These conditions then are necessary and sufficient for x to be on
a switching surface, of course, if x happens to lie initially on

a high order switching surface (in the three-dimensional case, this
means that x lies on the trajectory through the origin), F(x) = 0,
and either t2= t5, or t2= O, depending on the sign of U. 1In
addition, F is continuous in x, so the magnitude of F provides
a measure of how far x is from S,. By evaluating F(x) as t,
is incremented from O, one need only observe the point at which
F(x) changes sign, and if the inequalities are satisfied there, x
will have Jjust passed through a switching surface. Since we have
taken care not to land exactly on the switching surface, the process
may be begun again.

The disadvantages of this method are that the sign of F(x)
gives no clue as to the sign of €, and that there are large regions
on which F cannot be evaluated due to the discriminant’'s being
negative (although it must be non-negative on a switching surface).

However, these are not serious difficulties, especially the dis-

criminant problem, because the discriminant is zero on all high-order
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switching surfaces. On the other hand, the method has several ad-
vantages, being faster than the others, and just as accurate.

Its greatest advantage, however, lies in its ability to drive
a plant optimally to the origin in face of extremal disturbances.
These disturbances are fed into the computer as the variable w(t),
which we earlier assumed to be constant. The control law takes
such constant disturbances into account when computing the optimal
trajectories. Following are graphical comparisons of the time needed
to reach the origin disturbance-optimally, with the time needed when

a disturbed system 1s controlled by the no-disturbance law.

Chatter

It will readily be seen that the greater the magnitude of the
disturbance, the greater the advantage of disturbance-optimal con-
trol. These graphs were prepsred by simulating the optimal system
within a .00l second time increment, small enough so that finer in-
crements would have no discernible effect on the graph. The non-
optimal curve was prepared with a larger increment, .005, because it
was discovered that a finer increment actually increased the time to
the origin. If the optimal path is as shown in Figure 11 with the
net effect of the disturbance w as shown, the non-optimal control
will cause the plant to chatter back and forth across the switching

surface as shown in Figure 12.
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The smaller the increment, the more the trajectory will chatter, re-
sulting in a longer time needed to reach the origin. With a .005
increment, up to 17 switches in under .7 seconds were needed to reach

the origin.

Sensing Disturbances

The disturbance-optimal control law would be useless without
some scheme for actually sensing disturbances as they occur. As a
plant moves through phase space, its path is disturbed from the pro-
per path according to the differential equation. It moves normally
according to

x(t) = t(0) + M T B ¢ g5
0

But when disturbed, its path is described by

x(t) = éAtx(O) + At fteﬁAsb(e + w)ds (31)
0
From (31) we get
x (t) = x,(0) + (e +w)t (32)
x, (t)-x, (0)
AL o
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This value w 1is the average disturbance over time +t, +the constant
disturbance which would have moved x(0) +to x(t). The disturbance

at time t =0 1is given by

w =% (0) -€ (34)

Since this disturbance may be sensed as soon as it occurs, merely by
comparing the actual position of the plant to its predicted position,
it is feasible to take this disturbance into account when computing

optimal trajectories.

Using Disturbance Information

Knowledge of the disturbance level at any time is again use-
less unless accompanied by some assumption as to its future activity.
In the cases tested, it was assumed that the disturbance would remain
constant until the plant had been forced into the origin. A slightly

better scheme involves taking a new reading of the disturbance at

each increment, but still treating each new reading as though w would

remain constant at that level until the origin was reaches. However,
wind charts compiled at rocket launching sites (since wind is the
me jor disturbance encountered) indicate that the winds most commonly

found are like the ones shown in Figures 13 and 1h.
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The most reasonable approach to the problem of optimiing response with
respect to wind would seem to be combining knowledge of the wind chart
with on-line sensing. In other words, the best possibility lies in
sensing the wind as the plant moves, and from this date, plus knowledge
of habitual wind patterns, form good guesses as to the activity of the
wind — in the very near future. This is a possible area of future

study.

Computer Simulation

The optimal and non-optimal responses with respect to disturbances
were run on an IBM 1620 Computer. The computer program for the opti-

mal control law is in Appendix A.
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IV. COMPUTER SIMULATION OF THE FOURTH ORDER SYSTEM

As of now, no control law has been formulated for the system

-2 X =€ (35)

whose eigenvalues are 0,0,\,-A. The numerical methods which

were applied to the system

namely, solving explicitly the equations representing the solution
IB and II will not work on this much more complicated system. Since
optimal control is not presently available for the {0,0,2, -7}
case, it was decided to apply to it non-optimal control, to deter-
mine how that compared to the optimal.

The most likely scheme for controlling this system non-optimally
seemed to be applying the control law for the third order case (equa-
tion 36), whose eigenvalues are {(O,\,-A} for the third order case,

written vectorally as

x(t) = Ax + be (37)
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where

X 0
x= x|, A=]0
2
b4 0 x» ©
— O —
and b = |0}, the control law was found by first transforming A

1
to a diagonal form A,

0 0 -
and b to

1
b= |1

1

i

by a matrix @ such that
QlAq = 4

and ing = b,

The matrix Q-l was found to be
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Q@ =10 1 1
0 -1 1
The control law operates on the new veriables x' = Q-lx. However,

it was not possible to diagonalize the matrix of the fourth order

system, since it had two nondistinct eigenvalues., Therefore, the

running proceedure for this test was to move a plant according to

the (untransformed) fourth order system, and control the (transformed)
$ 1 1 H

variables X5 X5, x3 .

The solution to the fourth order system was as follows:

Then x(t) = At (0) = At ft e P ¢ as
0
1 t -1 +4+cosht -t + sinh t
. -1 + cos
e eAt B sinh t 1 cosh t
re - cosh t sinh t
0 0 sinh t cosh t
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-t + sinh t
-1 + cosh t
sinh t
cosh t

At
e

Let ¢ = x(0) = fte-Asb € ds.
0]

For an interval [0,t] over which ¢ does not chenge sign, we have

t2 + cosh t -1

o~

E,= x.(0) -
£,= %,(0) - t + sinh t
5, %, (0) + cosh t -1
£, %,(0) + cosh
= XM(O) + sinh t
At .
Thus x(t) = e "&(t) the control law is e = sgn(o), where
o = c(xi,xé,xé), o = U(Q—lx). The actual formulation of ¢ is

described in IB. To find test points for the fourth order systems,

a program was used which found x(0) according to the equations

x(t) = fP(x(0) + [TeBey ¢ ds)
0

When x(t) =0
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x(0) = - fte'Asb € ds.
0

One could find x(0) from the specifications of the switching tinmes
tl’ta’tB’th°
At this time, the computer simulation has not worked. One

possible reason for the failure is that the control law for the

system

which is Laplace-equivalent to

i
S (5222)

might better be used to control

X -2\ =¢€ +ae, a<k<1,
or

s t o

Se(se_xz)

-251-



This is because for small q,

S + . 1

s(se_ Xz) - s(sz_ )Lz)

This new control scheme has not yet been investigated.
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APPENDIX A

CONTROL LAW III WITH STEP NOISE
FORMAT (F10.4,F10.4,F10.4,F10.L4)

FORMAT (6X 1k,F10.2,F10.4/)

FORMAT (6H MIN, F10.k4,F10.4/)

FORMAT (F10.L)

DIMENSION T(20)

ACCEPT 1, XX1,XX2,XX3,DT

ACCEPT 31,EPM

EPN=EPM

X1=XX1

X2=Xx2

X3=XX3

TYPE 31,EPN

DO 4 I 1,20

T(I)= O.

K=1

D=1.

EP1-=1.

SIGL = 1.

D1=10000.

TT=0.

I=1

CO TO 21

IF(X1)5,7,5

EP1=-SIGN(X1)
IF(SIGN(EP1-EXP(-EP1*X1 )*(X2 + EP1)))3,10,9
SIGl=-1.

GO TO 10

SIG1=1.

Z=EXP(SIG1*X1)

SIG2=SIGL + 1,/Z*(X2 + SIG1)

SIG3=SIGl + Z¥*(X3-SIC1)

Z=1. + SIG2*SIGl
SIGMA=-((SIG3*Z-SIG2)**2 + L, ¥SIG2*¥SIG3)*SIGL
SIGMA=SIGMA* (SIG3*Z**2%SIGL-SIG2*¥2+ SIGL*SIG2 + 2, *ABS(SIG2)**1.5)
GO TO (11,12),K
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11
12
13

14
15

24

17
18

19

20

21

25
16

EPSI=SIGN(SIGMA) + EPN
K=2

D=X1%%2 + X2%¥2 + X3¥¥2
IF(SIGMA*EPST )20,13,13
IF(I-2)17,17,14
IF(D1-D)*D2)15,15,2k
DR=SQRT(D1)

TR=TT-DT
TYPE30,I,TR,DR

D2=-D2

IF(SENSE SWITCH 1)23,24
D1=D

GO TO (18,19),J

C2=X20 + EPSI
C3=EPSI-X30

J=2

TI=T(I) + DT

TT=TT + DT

E=EXP(T(I))
XI=EPSI*T(I) + X10
X2=C2*E-EPSI
X3=EPSI-€3/E

GO TO 6
EPSI=SIGN(SIGMA) + EPN
DR=SQRT(D)
TYPE2,T,TT,DR

I=I +1

D2=1

X10=X1

X20=X2

X30=X3

J=1

GO TO 6

(IF(SENSE SWITCH 3)33,16
EPN=EPN + EPM
IF(SENSE SWITCH 2)3,32
END
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[0 WM = O

10

11

12

13
14

15
16

17

GILCHRIST CONTROL LAW III
FORMAT (¥10.4,F10.4,F10.4,F10.4,F10.4)
FORMAT (F10.4,F10.4,F10. k)
FORMAT (F10.k4,F10.4,E1L4.L/)
DIMENSION T(3),E(3)

ACCEPT 1,X1,X2,X3,DT

ACCEPT 2,A,B,C

D=3. /A

E(2)=Exp(-D-A)

E(>)=EXP(-A + D)
E(1)=EXP(-A*D)
RF=C/A*(E(1)-1.) + X1

RS=B + C/(1.+ A)*E(2)-1.) + X2
RT=-B-C/(1.-A)*(E(3)-1.) + X3
U=1.

R1=U*RF

R2=U*RS-1.

R3=U*RT-1.

F=1.+ B¥U

TYPE 2,R1,R2,R3

Sl=-1.

T(3)=0.

E(3)=EXP(T(3))
E3=EXP(.5%(F¥T(3) + R1))
ER1=2. *(E3-1. )/(F*E(3) + R3)
ER2=ER1/E3

G=2.*(ER1-ER2) + F/E(3) + R2
IF(S1)10,12,15

S1=0.

G1=G

TYPE 3,T(3),ER1,G

T(3)=T(3) + DT
IF(D-T(3))9,9,11

S1=1.

TYPE 3,T(3),ER1,G
IF(G1*G)13,14, 1L

PAUSE

G1=G

IF(SENSE SWITCH 1)16,18
TYPE 3,T(3),ER1,G

IF(SENSE SWITCH 2)17,18
U=-U

GO TO 7
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18
19

20

IF(G1*G)20,20,19
T(3)=T(3) + DT
Gl=G

GO TO 9

TYPE 3,T(3),ER1,G
E(1)=1./ER1

'E(2)=1./ER2

T(1)=LOG(E(1))

T(2)=LOG(E(2))
R1=U*(2.%(T(1)-T(2)) + F*1(3) + R1)
R2=E(3)*G

R(3)=(2.*(E(1)-E(2)) + R3)/E(3) + F
D=SQRT(RL*¥2 + RO¥¥2 + R3*%2)

TYPE 1,T(1),T(2),T7(3),D

IF(SENSE SWITCH 2)5,6

END
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WIND OPTIMAL SEEING EYE CONTROL WITH HELP

1 FORMAT (F10.L4,F10.4,F10.4,F10.4)
2 FORMAT (F10.4)
3 FORMAT (6X Ik,F10.L,F10.4/)
L FORMAT (6H MIN,Ik,F10.L4,F10.4/)
30 FORMAT (Ik)
DIMENSION TA(20)
DO L0 1=5,20
40 TA(I) = O.
5 ACCEPT 1,XX1,XX2,XX3,DT
ACCEPT 30,K
ET=EXP(DT)
ET1=ET-1.
ERT=1. /ET
ERT1=ERT-1.
6 ACCEPT 2,U
ACCEPT 2,W
TT=0.
I=1
D1=100.
X1=XX1
X2=XX2
X3=XX3
ACCEPT 1,TA(1),TA(2),TA(3),TA(4)
GO TO 32
8 8=-1.
S1=-1.
D2=1.
T1=0.
9 IF(I-K)19,19,14
14 D=X1%*%2 + X2¥¥2 + X3*¥2
IF(D2*(D1-D))15,15,18
15 IF(D2)17,17,16
16 A=SQRT(D1)
T2=TT-DT
TYPE 4,I,T2,A
IF(SENSE SWITCH 2 )26,17
17 D2=-D2
18 D1=D
19 R1=-U*X1
R2=U*(X2 + W)-1.
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10
101

102

11

12

13
20
21
22

25
2L

23
28

29

R3=-U*(X3-W )-1.
G=1.+ U*W

A=2,%R2

B=k, -G*¥*2 + R2*R3
DSC=B**2-8, *A*¥R3
IF(DSC)10,11,11
IF(S)101,101,22
S=1.
IF(51)102,102,22
Fl=-1.

S1=1.

GO TO 22
E2=,5%(-B-SQRT(DSC) )/A
E3=(2.%E2 + R3)/G
T2=L0G(E2)
T3=10G(E3)
F=2,*T2-G*T3 + Rl
IF(S1)12,13,13
F1=SIGN(F)
F1=SIGN(F1 + .5)
S1=1.
IF(F*F1)25,20,20
IF(SENSE SWITCH 1)21,22
TYPE 3,I,TT,F
T1=T1 + DT

TT=TT + DT
IF(SENSE SWITCH 3)23,2k
TYPE 2,TT

ACCEPT 2,W

A=U + W

X1=X1 + DT*A
X2=ET*(X2-A%ERT1)
X3=ERT*(X3 + A*ET1)
GO TO 9
IF(T3-T2)31,28,28
IF(T2)31,29,29
TYPE 3,I,TT,F

I=I + 1

U=-U

-258-



32 A=U + W
R1=EXP(TA(I))
R2=1. /Rl
X1=X1 + A¥TA(I)
X2=R1*(X2-A%(R2-1.))
X3=R2*(X3 + A*(R1-1.))
GO TO 8
26 IF(SENSE SWITCH 3)5,6
31 Fl=-F1
GO TO 22
END
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